skip to main content

Search for: All records

Award ID contains: 1652289

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Studies have indicated exaggerated Maritime Continent (MC) barrier effect in simulations of the Madden–Julian oscillation (MJO), a dominant source of subseasonal predictability in the tropics. This issue has plagued the modeling and operational forecasting communities for decades, while the sensitivity of MC barrier on MJO predictability has not been addressed quantitatively. In this study, perfect-model ensemble forecasts are conducted with an aquaplanet configuration of the Community Earth System Model version 2 (CESM2) in which both basic state and tropical modes of variability are reasonably simulated with a warm pool–like SST distribution. When water-covered terrain mimicking MC landmasses is added to the warm pool–like SST framework, the eastward propagation of the MJO is disturbed by the prescribed MC aqua-mountain. The MJO predictability estimate with the perfect-model experiment is about 6 weeks but reduces to about 4 weeks when the MJO is impeded by the MC aqua-mountain. Given that the recent operational forecasts show an average of 3–4 weeks of MJO prediction skill, we can conclude that improving the MJO propagation crossing the MC could improve the MJO skill to 5–6 weeks, close to the potential predictability found in this study (6 weeks). Therefore, more effort toward understanding and improving the MJO propagation is needed to enhance the MJO and MJO-related forecasts to improve the subseasonal-to-seasonal prediction.

    more » « less
  2. Abstract

    Understanding air pollution in East Asia is of great importance given its high population density and serious air pollution problems during winter. Here, we show that the day-to-day variability of East Asia air pollution, during the recent 21-year winters, is remotely influenced by the Madden–Julian Oscillation (MJO), a dominant mode of subseasonal variability in the tropics. In particular, the concentration of particulate matter with aerodynamic diameter less than 10 micron (PM10) becomes significantly high when the tropical convections are suppressed over the Indian Ocean (MJO phase 5–6), and becomes significantly low when those convections are enhanced (MJO phase 1–2). The station-averaged PM10difference between these two MJO phases reaches up to 15% of daily PM10variability, indicating that MJO is partly responsible for wintertime PM10variability in East Asia. This finding helps to better understanding the wintertime PM10variability in East Asia and monitoring high PM10days.

    more » « less
  3. Abstract

    Subseasonal tropical cyclone (TC) reforecasts from the Community Earth System Model version 2 (CAM6) subseasonal prediction system are examined in this study. We evaluate the modeled TC climatology and the probabilistic forecast skill of basin‐wide TC genesis at weekly temporal resolution. Prediction skill is calculated using the Brier skill score relative to a constant annual mean climatology and to a monthly varying seasonal climatology during TC season. The model captures the observed basin‐wide climatological TC seasonality and spatial distributions at weeks 1–6, but TC genesis is largely underestimated from Week 2 onward. For some basins and lead times, the predicted TC genesis is primarily controlled by the number of TC “seeds” and the mean‐state climate condition. The model has good prediction skill relative to the constant climatology across all the basins and lead times, but is only skillful in the eastern Pacific, North Indian Ocean, and Southern Hemisphere at Week 1 when compared to the seasonal climatology, indicating limited skill in predicting deviations from the seasonal cycle. We find strong modulations of the predicted TC genesis at up to 3 weeks of forecast lead time by the Madden‐Julian Oscillation. The interannual variability of predicted TC genesis and accumulated cyclone energy are skillfully predicted in the North Atlantic and the Northwestern Pacific, with a strong modulation by the El Nino‐Southern Oscillation.

    more » « less
  4. Abstract

    Future changes in boreal winter MJO teleconnections over the Pacific–North America (PNA) region are examined in 15 Coupled Model Intercomparison Project phase 6 models (CMIP6s) under SSP585 (i.e., Shared Socioeconomic Pathway 5 following approximately the representative concentration pathway RCP8.5) scenarios. The most robust and significant change is an eastward extension (∼4° eastward for the multimodel mean) of MJO teleconnections in the North Pacific. Other projected changes in MJO teleconnections include a northward extension, more consistent patterns between different MJO events, stronger amplitude, and shorter persistence; however, these changes are more uncertain and less significant with a large intra- and intermodel spread. Mechanisms of the eastward teleconnection extension are investigated by comparing impacts of the future MJO and basic state changes on the anomalous Rossby wave source (RWS) and teleconnection pathways with a linear baroclinic model (LBM). The eastward extended jet in the future plays a more important role than the eastward-extended MJO in influencing the east–west position of MJO teleconnections. It leads to more eastward teleconnection propagation along the jet due to the eastward extension of turning latitudes before they propagate into North America. MJO teleconnections thus are positioned 2.9° more eastward in the North Pacific in the LBM. The eastward extended MJO, on the other hand, helps to generate a more eastward-extended RWS. However, negligible change is found in the east–west position of MJO teleconnections (only 0.3° more eastward in the LBM) excited from this RWS without the jet impacts. The above results suggest the dominant role of the jet change in influencing future MJO teleconnection position by altering their propagation pathways.

    more » « less
  5. Abstract

    We investigate how the Madden‐Julian Oscillation (MJO), the dominant mode of tropical subseasonal variability, modulates the lifecycle of cool‐season North Pacific atmospheric rivers (ARs). When the enhanced (suppressed) convection center is located over the Indian Ocean (western Pacific), more AR events originate over eastern Asia and with fewer over the subtropical northern Pacific. When the enhanced (suppressed) convection is over the western Pacific (Indian Ocean), the opposite changes occur, with more AR events originate over the subtropical northern Pacific and fewer over eastern Asia. Dynamical processes involving anomalous MJO wind and seasonal mean moisture are found to be the dominant factors impacting these variations in AR origins. The MJO‐related anomalous geopotential height patterns are also shown to modulate the propagation of the AR events. These MJO–AR lifecycle relationships are further supported by model simulations.

    more » « less
  6. Abstract

    Atmospheric river (AR) and its impact on monsoon rainfall in East Asia are investigated by considering their month‐to‐month variations during the East Asian summer monsoon (EASM). The AR in the EASM, defined as an anomalously enhanced plume‐like water vapor transport, frequently forms over eastern China, Korea and western Japan. However, its characteristics vary from the early (June‐July) to the late (August‐September) period of the EASM. In the early EASM, AR is typically characterized by a quasi‐stationary monsoon southwesterly along the northern boundary of the western North Pacific subtropical high (WNPSH), which is further intensified by a migrating extratropical cyclone in the north. In contrast, the late‐EASM AR, which is less frequent than the early EASM AR, is primarily organized by a migrating extratropical cyclone. The quasi‐stationary monsoon southwesterly is less influential as the northern boundary of the WNPSH shifts northward, being decoupled from the subtropical ocean. Both the early‐ and late‐EASM ARs contribute substantially to monsoon rainfall, especially to heavy rainfall events. In the early EASM, 35%–70% of total rainfall amount and 60%–80% of heavy rainfall events in eastern China, Korea and western Japan are associated with AR. Although weakened, AR‐related rainfall is still significant in the late EASM in Korea and western Japan. These results indicate that AR is a key ingredient of EASM precipitation and its subseasonal variations should be taken into account to better understand and predict AR‐related extreme precipitation in East Asia.

    more » « less
  7. Abstract

    Observational analysis has indicated a strong connection between the stratospheric quasi‐biennial oscillation (QBO) and tropospheric Madden‐Julian oscillation (MJO), with MJO activity being stronger during the easterly phase than the westerly phase of the QBO. We assess the representation of this QBO‐MJO connection in 30 models participating in the Coupled Model Intercomparison Project 6. While some models reasonably simulate the QBO during boreal winter, none of them capture a difference in MJO activity between easterly and westerly QBO that is larger than that which would be expected from the random sampling of internal variability. The weak signal of the simulated QBO‐MJO connection may be due to the weaker amplitude of the QBO than observed, especially between 100 to 50 hPa. This weaker amplitude in the models is seen both in the QBO‐related zonal wind and temperature, the latter of which is thought to be critical for destabilizing tropical convection.

    more » « less
  8. Abstract

    Since its discovery in the early 1970s, the crucial role of the Madden‐Julian Oscillation (MJO) in the global hydrological cycle and its tremendous influence on high‐impact climate and weather extremes have been well recognized. The MJO also serves as a primary source of predictability for global Earth system variability on subseasonal time scales. The MJO remains poorly represented in our state‐of‐the‐art climate and weather forecasting models, however. Moreover, despite the advances made in recent decades, theories for the MJO still disagree at a fundamental level. The problems of understanding and modeling the MJO have attracted significant interest from the research community. As a part of the AGU's Centennial collection, this article provides a review of recent progress, particularly over the last decade, in observational, modeling, and theoretical study of the MJO. A brief outlook for near‐future MJO research directions is also provided.

    more » « less
  9. Abstract

    An atmospheric river (AR) event represents strong poleward moisture transport and is defined as a series of spatiotemporally connected instantaneous AR objects. Utilizing an AR tracking algorithm with a depth‐first search (a widely used algorithm in computer science), we examine the life cycle characteristics of AR events that make landfall over the U.S. West Coast by their distinct origin locations. Landfalling AR events from the Northwest Pacific (120°E–170°W, WLAR events) temporally last longer (5.3 versus 3.6 days on average) and have stronger intensity of integrated vapor transport (508 versus 388 kg m−1s−1on average) than those originating from the Northeast Pacific (125°W–170°W, ELAR events). A persistent tripole geopotential height anomaly pattern over the North Pacific modulates the origin locations and propagation of landfalling AR events. WLAR events are associated with anomalous highs over northeastern Asia and the Northeast Pacific and an anomalous low over the central North Pacific. This pattern provides favorable conditions for WLAR events to start, propagate northeastward, and make landfall in the northwestern West Coast. WLAR events contribute approximately 25% of the total winter precipitation over Washington and British Columbia. ELAR events are associated with a similar tripole pattern to the WLAR events with an eastward shift. The anomalous low over the Northeast Pacific helps ELAR events to start, propagate northeastward, and make landfall in the southwestern West Coast. Precipitation induced by ELAR events contributes up to 30% of total winter precipitation over California.

    more » « less
  10. Abstract

    The Madden‐Julian oscillation (MJO) is the leading source of global subseasonal predictability; however, many dynamical forecasting systems struggle to predict MJO propagation through the Maritime Continent. Better understanding the biases in simulated physical processes associated with MJO propagation is the key to improve MJO prediction. In this study, MJO prediction skill, propagation processes, and mean state biases are evaluated in reforecasts from models participating in the Subseasonal Experiment (SubX) and Subseasonal to Seasonal (S2S) prediction projects. SubX and S2S reforecasts show MJO prediction skill out to 4.5 weeks based on the Real‐time Multivariate MJO index consistent with previous studies. However, a closer examination of these models' representation of MJO propagation through the Maritime Continent reveals that they fail to predict the MJO convection, associated circulations, and moisture advection processes beyond 10 days with most of models underestimating MJO amplitude. The biases in the MJO propagation can be partly associated with the following mean biases across the Indo‐Pacific: a drier low troposphere, excess surface precipitation, more frequent occurrence of light precipitation rates, and a transition to stronger precipitation rates at lower humidity than in observations. This indicates that deep convection occurs too frequently in models and is not sufficiently inhibited when tropospheric moisture is low, which is likely due to the representation of entrainment.

    more » « less