skip to main content


Title: For good measure: Identifying student measurement estimation strategies through actions, language, and gesture.
Measurement informs our actions and decisions well beyond school, necessitating that students develop a conceptual understanding of measurement alongside the procedural ability to measure objects. We present a first attempt to explore how students express their understanding of measurement by analyzing the behavior of college and elementary students as they completed measurement estimation tasks. We clustered observable student behavior to identify six profiles of behavioral strategies which may indicate different levels of conceptual understanding.  more » « less
Award ID(s):
2026722
NSF-PAR ID:
10222713
Author(s) / Creator(s):
Editor(s):
Gresalfi, M. &
Date Published:
Journal Name:
The Interdisciplinarity of the Learning Sciences, 14th International Conference of the Learning Sciences (ICLS) 2020
Volume:
2
ISSN:
1573-4552
Page Range / eLocation ID:
869-870
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Measurement informs our actions and decisions well beyond school, necessitating that students develop a conceptual understanding of measurement alongside the procedural ability to measure objects. We present a first attempt to explore how students express their understanding of measurement by analyzing the behavior of college and elementary students as they completed measurement estimation tasks. We clustered observable student behavior to identify six profiles of behavioral strategies which may indicate different levels of conceptual understanding. 
    more » « less
  2. Measurement informs our actions and decisions well beyond school, necessitating that students develop a conceptual understanding of measurement alongside the procedural ability to measure objects. We present a first attempt to explore how students express their understanding of measurement by analyzing the behavior of college and elementary students as they completed measurement estimation tasks. We clustered observable student behavior to identify six profiles of behavioral strategies which may indicate different levels of conceptual understanding. 
    more » « less
  3. In teaching mechanics, we use multiple representations of vectors to develop concepts and analysis techniques. These representations include pictorials, diagrams, symbols, numbers and narrative language. Through years of study as students, researchers, and teachers, we develop a fluency rooted in a deep conceptual understanding of what each representation communicates. Many novice learners, however, struggle to gain such understanding and rely on superficial mimicry of the problem solving procedures we demonstrate in examples. The term representational competence refers to the ability to interpret, switch between, and use multiple representations of a concept as appropriate for learning, communication and analysis. In engineering statics, an understanding of what each vector representation communicates and how to use different representations in problem solving is important to the development of both conceptual and procedural knowledge. Science education literature identifies representational competence as a marker of true conceptual understanding. This paper presents development work for a new assessment instrument designed to measure representational competence with vectors in an engineering mechanics context. We developed the assessment over two successive terms in statics courses at a community college, a medium-sized regional university, and a large state university. We started with twelve multiple-choice questions that survey the vector representations commonly employed in statics. Each question requires the student to interpret and/or use two or more different representations of vectors and requires no calculation beyond single digit integer arithmetic. Distractor answer choices include common student mistakes and misconceptions drawn from the literature and from our teaching experience. We piloted these twelve questions as a timed section of the first exam in fall 2018 statics courses at both Whatcom Community College (WCC) and Western Washington University. Analysis of students’ unprompted use of vector representations on the open-ended problem-solving section of the same exam provides evidence of the assessment’s validity as a measurement instrument for representational competence. We found a positive correlation between students’ accurate and effective use of representations and their score on the multiple choice test. We gathered additional validity evidence by reviewing student responses on an exam wrapper reflection. We used item difficulty and item discrimination scores (point-biserial correlation) to eliminate two questions and revised the remaining questions to improve clarity and discriminatory power. We administered the revised version in two contexts: (1) again as part of the first exam in the winter 2019 Statics course at WCC, and (2) as an extra credit opportunity for statics students at Utah State University. This paper includes sample questions from the assessment to illustrate the approach. The full assessment is available to interested instructors and researchers through an online tool. 
    more » « less
  4. In teaching mechanics, we use multiple representations of vectors to develop concepts and analysis techniques. These representations include pictorials, diagrams, symbols, numbers and narrative language. Through years of study as students, researchers, and teachers, we develop a fluency rooted in a deep conceptual understanding of what each representation communicates. Many novice learners, however, struggle to gain such understanding and rely on superficial mimicry of the problem solving procedures we demonstrate in examples. The term representational competence refers to the ability to interpret, switch between, and use multiple representations of a concept as appropriate for learning, communication and analysis. In engineering statics, an understanding of what each vector representation communicates and how to use different representations in problem solving is important to the development of both conceptual and procedural knowledge. Science education literature identifies representational competence as a marker of true conceptual understanding. This paper presents development work for a new assessment instrument designed to measure representational competence with vectors in an engineering mechanics context. We developed the assessment over two successive terms in statics courses at a community college, a medium-sized regional university, and a large state university. We started with twelve multiple-choice questions that survey the vector representations commonly employed in statics. Each question requires the student to interpret and/or use two or more different representations of vectors and requires no calculation beyond single digit integer arithmetic. Distractor answer choices include common student mistakes and misconceptions drawn from the literature and from our teaching experience. We piloted these twelve questions as a timed section of the first exam in fall 2018 statics courses at both Whatcom Community College (WCC) and Western Washington University. Analysis of students’ unprompted use of vector representations on the open-ended problem-solving section of the same exam provides evidence of the assessment’s validity as a measurement instrument for representational competence. We found a positive correlation between students’ accurate and effective use of representations and their score on the multiple choice test. We gathered additional validity evidence by reviewing student responses on an exam wrapper reflection. We used item difficulty and item discrimination scores (point-biserial correlation) to eliminate two questions and revised the remaining questions to improve clarity and discriminatory power. We administered the revised version in two contexts: (1) again as part of the first exam in the winter 2019 Statics course at WCC, and (2) as an extra credit opportunity for statics students at Utah State University. This paper includes sample questions from the assessment to illustrate the approach. The full assessment is available to interested instructors and researchers through an online tool. 
    more » « less
  5. In engineering education, conceptual understanding of the subject matter is as important as the attainment of practical skills. Therefore, teaching methodology should be designed in such a way that it enhances student conceptual understanding. To enhance conceptual understanding of fluid flow measurement, in this study, we report on the development of a low-cost, small-sized, reproducible, highly visual venturi meter module for active learning. With this module, students can conduct fluid flow experiments in their classroom or lab setting to learn the fundamental principles behind the venturi meter. Quantitative measurements of flow rates and associated parameters with the module reveal its usefulness for demonstrating fluid flow physics, while worksheet-guided studies promote student engagement and conceptual understanding. Results of pretest, posttest, and motivational survey assessments show that the module and associated activities improve conceptual understanding, result in a surge in confidence, and reinforce the desire to participate. Therefore, based on the findings, the modules developed can be used to enhance student understanding in fluid mechanics courses. 
    more » « less