skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Role of high-dose exposure in transmission hot zones as a driver of SARS-CoV-2 dynamics
Epidemiological data about SARS-CoV-2 spread indicate that the virus is not transmitted uniformly in the population. The transmission tends to be more effective in select settings that involve exposure to relatively high viral dose, such as in crowded indoor settings, assisted living facilities, prisons or food processing plants. To explore the effect on infection dynamics, we describe a new mathematical model where transmission can occur (i) in the community at large, characterized by low-dose exposure and mostly mild disease, and (ii) in so-called transmission hot zones, characterized by high-dose exposure that can be associated with more severe disease. The model yields different types of epidemiological dynamics, depending on the relative importance of hot zone and community transmission. Interesting dynamics occur if the rate of virus release/deposition from severely infected people is larger than that of mildly infected individuals. Under this assumption, we find that successful infection spread can hinge upon high-dose hot zone transmission, yet the majority of infections are predicted to occur in the community at large with mild disease. In this regime, residual hot zone transmission can account for continued virus spread during community lockdowns, and the suppression of hot zones after community interventions are relaxed can cause a prolonged lack of infection resurgence following the reopening of society. This gives rise to the notion that targeted interventions specifically reducing virus transmission in the hot zones have the potential to suppress overall infection spread, including in the community at large. Epidemiological trends in the USA and Europe are interpreted in light of this model.  more » « less
Award ID(s):
1763272 1815406 1662146
PAR ID:
10222816
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of The Royal Society Interface
Volume:
18
Issue:
176
ISSN:
1742-5662
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lowen, Anice C (Ed.)
    ABSTRACT West Nile virus (WNV) and St. Louis encephalitis virus (SLEV) are closely related flaviviruses that can cause encephalitis in humans and related diseases in animals. In nature, both are transmitted byCulex, with wild birds, including jays, sparrows, and robins, serving as vertebrate hosts. WNV and SLEV circulate in the same environments and have recently caused concurrent disease outbreaks in humans. The extent that coinfection of mosquitoes or birds may alter transmission dynamics, however, is not well characterized. We therefore sought to determine if coinfection alters infection kinetics and virus levels in birds and infection rates in mosquitoes. Accordingly, American robins (Turdus migratorius), two species of mosquitoes, and vertebrate and invertebrate cells were infected with WNV and/or SLEV to assess how simultaneous exposure may alter infection outcomes. There was variable impact of coinfection in vertebrate cells, with some evidence that SLEV can suppress WNV replication. However, robins had comparable viremia and antibody responses regardless of coinfection. Conversely, inCulexcells and mosquitoes, we saw a minimal impact of simultaneous exposure to both viruses on replication, with comparable infection, dissemination, and transmission rates in singly infected and coinfected mosquitoes. Importantly, while WNV and SLEV levels in coinfected mosquito midguts were positively correlated, we saw no correlation between them in salivary glands and saliva. These results reveal that while coinfection can occur in both avian and mosquito hosts, the viruses minimally impact one another. The potential for coinfection to alter virus population structure or the likelihood of rare genotypes emerging remains unknown.IMPORTANCEWest Nile virus (WNV) and St. Louis encephalitis virus (SLEV) are closely related viruses that are transmitted by the same mosquitoes and infect the same birds in nature. Both viruses circulate in the same regions and have caused concurrent outbreaks in humans. It is possible that mosquitoes, birds, and/or humans could be infected with both WNV and SLEV simultaneously, as has been observed with Zika, chikungunya, and dengue viruses. To study the impact of coinfection, we experimentally infected vertebrate and invertebrate cells, American robins, and twoCulexspecies with WNV and/or SLEV. Robins were efficiently coinfected, with no impact of coinfection on virus levels or immune response. Similarly, in mosquitoes, coinfection did not impact infection rates, and mosquitoes could transmit both WNV and SLEV together. These results reveal that WNV and SLEV coinfection in birds and mosquitoes can occur in nature, which may impact public health and human disease risk. 
    more » « less
  2. Jose L. Domingo (Ed.)
    Spreading patterns of the coronavirus disease (COVID-19) showed that infected and asymptotic carriers both played critical role in escalating transmission of virus leading to global pandemic. Indoor environments of res- taurants, classrooms, hospitals, offices, large assemblies, and industrial installations are susceptible to virus outbreak. Industrial facilities such as fabrication rooms of meat processing plants, which are laden with moisture and fat in indoor air are the most sensitive spaces. Fabrication room workers standing next to each other are exposed to the risk of long-range viral droplets transmission within the facility. An asymptomatic carrier may transmit the virus unintentionally to fellow workers through sporadic sneezing leading to community spread. A novel Computational Fluid Dynamics (CFD) model of a fabrication room with typical interior (stationary objects) was prepared and investigated. Study was conducted to identify indoor airflow patterns, droplets spreading patterns, leading droplets removal mechanism, locations causing maximum spread of droplets, and infection index for workers along with stationary objects in reference to seven sneeze locations covering the entire room. The role of condensers, exhaust fans and leakage of indoor air through large and small openings to other rooms was investigated. This comprehensive study presents flow scenarios in the facility and helps identify locations that are potentially at lower or higher risk for exposure to COVID-19. The results presented in this study are suitable for future engineering analyses aimed at redesigning public spaces and common areas to minimize the spread of aerosols and droplets that may contain pathogens. 
    more » « less
  3. null (Ed.)
    Abstract Recombination has been shown to contribute to human immunodeficiency virus-1 (HIV-1) evolution in vivo, but the underlying dynamics are extremely complex, depending on the nature of the fitness landscapes and of epistatic interactions. A less well-studied determinant of recombinant evolution is the mode of virus transmission in the cell population. HIV-1 can spread by free virus transmission, resulting largely in singly infected cells, and also by direct cell-to-cell transmission, resulting in the simultaneous infection of cells with multiple viruses. We investigate the contribution of these two transmission pathways to recombinant evolution, by applying mathematical models to in vitro experimental data on the growth of fluorescent reporter viruses under static conditions (where both transmission pathways operate), and under gentle shaking conditions, where cell-to-cell transmission is largely inhibited. The parameterized mathematical models are then used to extrapolate the viral evolutionary dynamics beyond the experimental settings. Assuming a fixed basic reproductive ratio of the virus (independent of transmission pathway), we find that recombinant evolution is fastest if virus spread is driven only by cell-to-cell transmission and slows down if both transmission pathways operate. Recombinant evolution is slowest if all virus spread occurs through free virus transmission. This is due to cell-to-cell transmission 1, increasing infection multiplicity; 2, promoting the co-transmission of different virus strains from cell to cell; and 3, increasing the rate at which point mutations are generated as a result of more reverse transcription events. This study further resulted in the estimation of various parameters that characterize these evolutionary processes. For example, we estimate that during cell-to-cell transmission, an average of three viruses successfully integrated into the target cell, which can significantly raise the infection multiplicity compared to free virus transmission. In general, our study points towards the importance of infection multiplicity and cell-to-cell transmission for HIV evolution. 
    more » « less
  4. Eksin, Ceyhun (Ed.)
    The global pandemic of COVID-19 revealed the dynamic heterogeneity in how individuals respond to infection risks, government orders, and community-specific social norms. Here we demonstrate how both individual observation and social learning are likely to shape behavioral, and therefore epidemiological, dynamics over time. Efforts to delay and reduce infections can compromise their own success, especially when disease risk and social learning interact within sub-populations, as when people observe others who are (a) infected and/or (b) socially distancing to protect themselves from infection. Simulating socially-learning agents who observe effects of a contagious virus, our modelling results are consistent with with 2020 data on mask-wearing in the U.S. and also concur with general observations of cohort induced differences in reactions to public health recommendations. We show how shifting reliance on types of learning affect the course of an outbreak, and could therefore factor into policy-based interventions incorporating age-based cohort differences in response behavior. 
    more » « less
  5. Abstract The likelihood an individual becomes infected depends on the community in which it is embedded. For environmentally transmitted parasites, host community composition can alter host density, the density of parasites that hosts encounter in the environment, and the dose to which hosts are subsequently exposed. While some multi‐host theory incorporates some of these factors (e.g., competition among hosts), it does not currently consider the nonlinear relationships between parasite exposure dose and per‐propagule infectivity (dose–infectivity relationships), between exposure dose and infected host mortality (dose–mortality relationships), and between exposure dose and parasite propagule excretion (dose–excretion relationships). This makes it difficult to predict the impact of host species on one another’s likelihood of infection. To understand the implications of these nonlinear dose relationships for multi‐host communities, we first performed a meta‐analysis on published dose–infectivity experiments to quantify the proportion of accelerating, linear, or decelerating dose–infectivity relationships; we found that most experiments demonstrated decelerating dose–infectivity relationships. We then explored how dose–infectivity, dose–mortality, and dose–excretion relationships might alter the impact of heterospecific host density on infectious propagule density, infection prevalence, and density of a focal host using two‐host, one‐parasite models. We found that dose relationships either decreased the magnitude of the impact of heterospecific host density on propagule density and infection prevalence via negative feedback loops (decelerating dose–infectivity relationships, positive dose–mortality relationships, and negative dose–excretion relationships), or increased the magnitude of the impact of heterospecific host density on infection prevalence via positive feedback loops (accelerating dose–infectivity relationships and positive dose–excretion relationships). Further, positive dose–mortality relationships resulted in hosts that traditionally decrease disease (e.g., low competence, strong competitors) increasing infection prevalence, and vice versa. Finally, we found that dose relationships can create positive feedback loops that facilitate friendly competition (i.e., increased heterospecific density has a positive effect on focal host density because the reduction in disease outweighs the negative effects of interspecific competition). This suggests that without taking dose relationships into account, we may incorrectly predict the effect of heterospecific host interactions, and thus host community composition, on environmentally transmitted parasites. 
    more » « less