skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dispersion of sneeze droplets in a meat facility indoor environment – Without partitions
Spreading patterns of the coronavirus disease (COVID-19) showed that infected and asymptotic carriers both played critical role in escalating transmission of virus leading to global pandemic. Indoor environments of res- taurants, classrooms, hospitals, offices, large assemblies, and industrial installations are susceptible to virus outbreak. Industrial facilities such as fabrication rooms of meat processing plants, which are laden with moisture and fat in indoor air are the most sensitive spaces. Fabrication room workers standing next to each other are exposed to the risk of long-range viral droplets transmission within the facility. An asymptomatic carrier may transmit the virus unintentionally to fellow workers through sporadic sneezing leading to community spread. A novel Computational Fluid Dynamics (CFD) model of a fabrication room with typical interior (stationary objects) was prepared and investigated. Study was conducted to identify indoor airflow patterns, droplets spreading patterns, leading droplets removal mechanism, locations causing maximum spread of droplets, and infection index for workers along with stationary objects in reference to seven sneeze locations covering the entire room. The role of condensers, exhaust fans and leakage of indoor air through large and small openings to other rooms was investigated. This comprehensive study presents flow scenarios in the facility and helps identify locations that are potentially at lower or higher risk for exposure to COVID-19. The results presented in this study are suitable for future engineering analyses aimed at redesigning public spaces and common areas to minimize the spread of aerosols and droplets that may contain pathogens.  more » « less
Award ID(s):
2034048
PAR ID:
10468498
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Jose L. Domingo
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Environmental Research
Volume:
236
Issue:
P1
ISSN:
0013-9351
Page Range / eLocation ID:
116603
Subject(s) / Keyword(s):
COVID-19 Sneeze droplets dispersion Computational fluid dynamics (CFD) Indoor environment Meat processing plant Infection index
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The ongoing coronavirus disease 2019 (COVID-19) pandemic is a serious challenge faced by the global community. Physical scientists can help medical workers and biomedical scientists, engineers, and practitioners, who are working on the front line, to slow down and eventually contain the spread of the COVID-19 virus. This review is focused on the physicochemical characteristics, including composition, aerodynamics, and drying behavior of respiratory droplets as a complex and multicomponent soft matter system, which are the main carrier of the virus for interpersonal transmission. The distribution and dynamics of virus particles within a droplet are also discussed. Understanding the characteristics of virus-laden respiratory droplets can lead to better design of personal protective equipment, frequently touched surfaces such as door knobs and touchscreens, and filtering equipment for indoor air circulation. Such an understanding also provides the scientific basis of public policy, including social distancing rules and public hygiene guidelines, implemented by governments around the world. 
    more » « less
  2. Since the pandemic of COVID-19 began in January 2020, the world has witnessed drastic social-economic changes. To harness the virus spread, several studies have been done to study contributing factors that are pertinent to COVID-19 transmission risks. However, little has been done to investigate how human activities on the spatial network are correlated to the virus transmission and spread. This paper performs a statistical analysis to examine interrelationships between spatial network characteristics and cumulative cases of COVID-19 in US counties. Specifically, both county-level transportation profiles (e.g., the total number of commute workers, route miles of freight railroad) and road network characteristics of US counties are considered. Then, the lasso regression model is utilized to identify a sparse set of significant variables that are sensitive to the response variable of COVID-19 cases. Finally, the fixed-effect model is built to capture the relationship between the selected set of predictors and the response variable. This work helps identify and determine salient features from spatial network characteristics and transportation profiles, thereby improving the understanding of COVID-19 spread dynamics. These significant variables can also be utilized to develop simulation models for the prediction of real-time positions of virus spread and the optimization of intervention strategies. 
    more » « less
  3. The complexity of transmission of COVID-19 in the human population cannot be overstated. Although major transmission routes of COVID-19 remain as human-to-human interactions, understanding the possible role of climatic and weather processes in accelerating such interactions is still a challenge. The majority of studies on the transmission of this disease have suggested a positive association between a decrease in ambient air temperature and an increase in human cases. Using data from 19 early epicenters, we show that the relationship between the incidence of COVID-19 and temperature is a complex function of prevailing climatic conditions influencing human behavior that govern virus transmission dynamics. We note that under a dry (low-moisture) environment, notably at dew point temperatures below 0°C, the incidence of the disease was highest. Prevalence of the virus in the human population, when ambient air temperatures were higher than 24°C or lower than 17°C, was hypothesized to be a function of the interaction between humans and the built or ambient environment. An ambient air temperature range of 17 to 24°C was identified, within which virus transmission appears to decrease, leading to a reduction in COVID-19 human cases. 
    more » « less
  4. Abstract Coronavirus Disease 2019 (COVID‐19) is spreading around the world, and the United States has become the epicenter of the global pandemic. However, little is known about the causes behind the large spatial variability of the COVID‐19 incidence. Here we use path analysis model to quantify the influence of four potential factors (urban vegetation, population density, air temperature, and baseline infection) in shaping the highly heterogeneous transmission patterns of COVID‐19 across the United States. Our results show that urban vegetation can slow down the spread of COVID‐19, and each 1% increase in the percentage of urban vegetation will lead to a 2.6% decrease in cumulative COVID‐19 cases. Additionally, the mediating role of urban vegetation suggests that urban vegetation could reduce increases in cumulative COVID‐19 cases induced by population density and baseline infection. Our findings highlight the importance of urban vegetation in strengthening urban resilience to public health emergencies. 
    more » « less
  5. There is an ongoing debate on the different transmission modes of SARS-CoV-2 and their relative contributions to the pandemic. In this paper, we employ a simple mathematical model, which incorporates both the human-to-human and environment-to-human transmission routes, to study the transmission dynamics of COVID-19. We focus our attention on the role of airborne transmission in the spread of the disease in a university campus setting. We conduct both mathematical analysis and numerical simulation, and incorporate published experimental data for the viral concentration in the air to fit model parameters. Meanwhile, we compare the outcome to that of the standard SIR model, utilizing a perturbation analysis in the presence of multiple time scales. Our data fitting and numerical simulation results show that the risk of airborne transmission for SARS-CoV-2 strongly depends on how long the virus can remain viable in the air. If the time for this viability is short, the airborne transmission route would be inconsequential in shaping the overall transmission risk and the total infection size. On the other hand, if the infectious virus can persist in aerosols beyond a few hours, then airborne transmission could play a much more significant role in the spread of COVID-19. 
    more » « less