The development of lithium-ion battery technology has ensured that battery thermal management systems are an essential component of the battery pack for next-generation energy storage systems. Using dielectric immersion cooling, researchers have demonstrated the ability to attain high heat transfer rates due to the direct contact between cells and the coolant. However, feedback control has not been widely applied to immersion cooling schemes. Furthermore, current research has not considered battery pack plant design when optimizing feedback control. Uncertainties are inherent in the cooling equipment, resulting in temperature and flow rate fluctuations. Hence, it is crucial to systematically consider these uncertainties during cooling system design to improve the performance and reliability of the battery pack. To fill this gap, we established a reliability-based control co-design optimization framework using machine learning for immersion cooled battery packs. We first developed an experimental setup for 21700 battery immersion cooling, and the experiment data were used to build a high-fidelity multiphysics finite element model. The model can precisely represent the electrical and thermal profile of the battery. We then developed surrogate models based on the finite element simulations in order to reduce computational cost. The reliability-based control co-design optimization was employed to find the best plant and control design for the cooling system, in which an outer optimization loop minimized the cooling system cost while an inner loop ensured battery pack reliability. Finally, an optimal cooling system design was obtained and validated, which showed a 90% saving in cooling system energy consumption. 
                        more » 
                        « less   
                    
                            
                            Optimal experimental design for mathematical models of haematopoiesis
                        
                    
    
            The haematopoietic system has a highly regulated and complex structure in which cells are organized to successfully create and maintain new blood cells. It is known that feedback regulation is crucial to tightly control this system, but the specific mechanisms by which control is exerted are not completely understood. In this work, we aim to uncover the underlying mechanisms in haematopoiesis by conducting perturbation experiments, where animal subjects are exposed to an external agent in order to observe the system response and evolution. We have developed a novel Bayesian hierarchical framework for optimal design of perturbation experiments and proper analysis of the data collected. We use a deterministic model that accounts for feedback and feedforward regulation on cell division rates and self-renewal probabilities. A significant obstacle is that the experimental data are not longitudinal, rather each data point corresponds to a different animal. We overcome this difficulty by modelling the unobserved cellular levels as latent variables. We then use principles of Bayesian experimental design to optimally distribute time points at which the haematopoietic cells are quantified. We evaluate our approach using synthetic and real experimental data and show that an optimal design can lead to better estimates of model parameters. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10222837
- Date Published:
- Journal Name:
- Journal of The Royal Society Interface
- Volume:
- 18
- Issue:
- 174
- ISSN:
- 1742-5689
- Page Range / eLocation ID:
- 20200729
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This paper examines the problem of real-time optimization of networked systems and develops online algorithms that steer the system towards the optimal trajectory without explicit knowledge of the system model. The problem is modeled as a dynamic optimization problem with time-varying performance objectives and engineering constraints. The design of the algorithms leverages the online zero-order primal-dual projected-gradient method. In particular, the primal step that involves the gradient of the objective function (and hence requires a networked systems model) is replaced by its zero-order approximation with two function evaluations using a deterministic perturbation signal. The evaluations are performed using the measurements of the system output, hence giving rise to a feedback interconnection, with the optimization algorithm serving as a feedback controller. The paper provides some insights on the stability and tracking properties of this interconnection. Finally, the paper applies this methodology to a real-time optimal power flow problem in power systems, and shows its efficacy on the IEEE 37-node distribution test feeder for reference power tracking and voltage regulation.more » « less
- 
            Finley, Stacey D (Ed.)In experiments, the distributions of mRNA or protein numbers in single cells are often fitted to the random telegraph model which includes synthesis and decay of mRNA or protein, and switching of the gene between active and inactive states. While commonly used, this model does not describe how fluctuations are influenced by crucial biological mechanisms such as feedback regulation, non-exponential gene inactivation durations, and multiple gene activation pathways. Here we investigate the dynamical properties of four relatively complex gene expression models by fitting their steady-state mRNA or protein number distributions to the simple telegraph model. We show that despite the underlying complex biological mechanisms, the telegraph model with three effective parameters can accurately capture the steady-state gene product distributions, as well as the conditional distributions in the active gene state, of the complex models. Some effective parameters are reliable and can reflect realistic dynamic behaviors of the complex models, while others may deviate significantly from their real values in the complex models. The effective parameters can also be applied to characterize the capability for a complex model to exhibit multimodality. Using additional information such as single-cell data at multiple time points, we provide an effective method of distinguishing the complex models from the telegraph model. Furthermore, using measurements under varying experimental conditions, we show that fitting the mRNA or protein number distributions to the telegraph model may even reveal the underlying gene regulation mechanisms of the complex models. The effectiveness of these methods is confirmed by analysis of single-cell data forE. coliand mammalian cells. All these results are robust with respect to cooperative transcriptional regulation and extrinsic noise. In particular, we find that faster relaxation speed to the steady state results in more precise parameter inference under large extrinsic noise.more » « less
- 
            Cell polarity refers to the asymmetric distribution of proteins and other molecules along a specified axis within a cell. Polarity establishment is the first step in many cellular processes. For example, directed growth or migration requires the formation of a cell front and back. In many cases, polarity occurs in the absence of spatial cues. That is, the cell undergoes symmetry breaking. Understanding the molecular mechanisms that allow cells to break symmetry and polarize requires computational models that span multiple spatial and temporal scales. Here, we apply a multiscale modeling approach to examine the polarity circuit of yeast. In addition to symmetry breaking, experiments revealed two key features of the yeast polarity circuit: bistability and rapid dismantling of the polarity site following a loss of signal. We used modeling based on ordinary differential equations (ODEs) to investigate mechanisms that generate these behaviors. Our analysis revealed that a model involving positive and negative feedback acting on different time scales captured both features. We then extend our ODE model into a coarse-grained reaction–diffusion equation (RDE) model to capture the spatial profiles of polarity factors. After establishing that the coarse-grained RDE model qualitatively captures key features of the polarity circuit, we expand it to more accurately capture the biochemical reactions involved in the system. We convert the expanded model to a particle-based model that resolves individual molecules and captures fluctuations that arise from the stochastic nature of biochemical reactions. Our models assume that negative regulation results from negative feedback. However, experimental observations do not rule out the possibility that negative regulation occurs through an incoherent feedforward loop. Therefore, we conclude by using our RDE model to suggest how negative feedback might be distinguished from incoherent feedforward regulation.more » « less
- 
            Distributed feedback design and complexity constrained control are examples of problems posed within the domain of structured optimal feedback synthesis. The optimal feedback gain is typically a non-convex function of system primitives. However, in recent years, algorithms have been proposed to obtain locally optimal solutions. In applications to large-scale distributed control, the major obstacle is computational complexity. This paper addresses complexity through a combination of linear-algebraic techniques and computational methods adapted from both machine learning and reinforcement learning. It is shown that for general classes of optimal control problems, the objective function and its gradient can be computed from data. Transformations borrowed from the theory of reinforcement learning are adapted to obtain simulation-based algorithms for computing the structured optimal H2 feedback gain. Customized proximal algorithms based on gradient descent and incremental gradient are tested in computational experiments and their relative merits are discussed.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    