skip to main content

Title: Can Voters Detect Malicious Manipulation of Ballot Marking Devices?
Ballot marking devices (BMDs) allow voters to select candidates on a computer kiosk, which prints a paper ballot that the voter can review before inserting it into a scanner to be tabulated. Unlike paperless voting machines, BMDs provide voters an opportunity to verify an auditable physical record of their choices, and a growing number of U.S. jurisdictions are adopting them for all voters. However, the security of BMDs depends on how reliably voters notice and correct any adversarially induced errors on their printed ballots. In order to measure voters' error detection abilities, we conducted a large study (N = 241) in a realistic polling place setting using real voting machines that we modified to introduce an error into each printout. Without intervention, only 40% of participants reviewed their printed ballots at all, and only 6.6% told a poll worker something was wrong. We also find that carefully designed interventions can improve verification performance. Verbally instructing voters to review the printouts and providing a written slate of candidates for whom to vote both significantly increased review and reporting rates-although the improvements may not be large enough to provide strong security in close elections, especially when BMDs are used by all voters. Based on these findings, we make several evidence-based recommendations to help better defend BMD-based elections.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
2020 IEEE Symposium on Security and Privacy (SP)
Page Range / eLocation ID:
679 to 694
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Instant runoff voting (IRV) is an increasingly-popular alternative to traditional plurality voting in which voters submit rankings over the candidates rather than single votes. In practice, elections using IRV often restrict the ballot length, the number of candidates a voter is allowed to rank on their ballot. We theoretically and empirically analyze how ballot length can influence the outcome of an election, given fixed voter preferences. We show that there exist preference profiles over k candidates such that up to k-1 different candidates win at different ballot lengths. We derive exact lower bounds on the number of voters required for such profiles and provide a construction matching the lower bound for unrestricted voter preferences. Additionally, we characterize which sequences of winners are possible over ballot lengths and provide explicit profile constructions achieving any feasible winner sequence. We also examine how classic preference restrictions influence our results—for instance, single-peakedness makes k-1 different winners impossible but still allows at least Ω(√k). Finally, we analyze a collection of 168 real-world elections, where we truncate rankings to simulate shorter ballots. We find that shorter ballots could have changed the outcome in one quarter of these elections. Our results highlight ballot length as a consequential degree of freedom in the design of IRV elections. 
    more » « less
  2. U.S. elections rely heavily on computers such as voter registration databases, electronic pollbooks, voting machines, scanners, tabulators, and results reporting websites. These introduce digital threats to election outcomes. Risk-limiting audits (RLAs) mitigate threats to some of these systems by manually inspecting random samples of ballot cards. RLAs have a large chance of correcting wrong outcomes (by conducting a full manual tabulation of a trustworthy record of the votes), but can save labor when reported outcomes are correct. This efficiency is eroded when sampling cannot be targeted to ballot cards that contain the contest(s) under audit. If the sample is drawn from all cast cards, then RLA sample sizes scale like the reciprocal of the fraction of ballot cards that contain the contest(s) under audit. That fraction shrinks as the number of cards per ballot grows (i.e., when elections contain more contests) and as the fraction of ballots that contain the contest decreases (i.e., when a smaller percentage of voters are eligible to vote in the contest). States that conduct RLAs of contests on multi-card ballots or RLAs of small contests can dramatically reduce sample sizes by using information about which ballot cards contain which contests—by keeping track of card-style data (CSD). For instance, CSD reduce the expected number of draws needed to audit a single countywide contest on a 4-card ballot by 75%. Similarly, CSD reduce the expected number of draws by 95% or more for an audit of two contests with the same margin on a 4-card ballot if one contest is on every ballot and the other is on 10% of ballots. In realistic examples, the savings can be several orders of magnitude. 
    more » « less
  3. null (Ed.)
    As paper ballots and post-election audits gain increased adoption in the United States, election technology vendors are offering products that allow jurisdictions to review ballot images—digital scans produced by optical-scan voting machines—in their post-election audit procedures. Jurisdictions including the state of Maryland rely on such image audits as an alternative to inspecting the physical paper ballots. We show that image audits can be reliably defeated by an attacker who can run malicious code on the voting machines or election management system. Using computer vision techniques, we develop an algorithm that automatically and seamlessly manipulates ballot images, moving voters’ marks so that they appear to be votes for the attacker’s preferred candidate. Our implementation is compatible with many widely used ballot styles, and we show that it is effective using a large corpus of ballot images from a real election. We also show that the attack can be delivered in the form of a malicious Windows scanner driver, which we test with a scanner that has been certified for use in vote tabulation by the U.S. Election Assistance Commission. These results demonstrate that post-election audits must inspect physical ballots, not merely ballot images, if they are to strongly defend against computer-based attacks on widely used voting systems. 
    more » « less
  4. We solve a long-standing challenge to the integrity of votes cast without the supervision of a voting booth: ``{\it improper influence},'' which typically refers to any combination of vote buying and voter coercion. Our approach allows each voter, or their trusted agents (which we call ``{\it hedgehogs}''), to {\it ``nullify''} (effectively cancel) their vote in a way that is unstoppable, irrevocable, and forever unattributable to the voter. In particular, our approach enhances security of online, remote, public-sector elections, for which there is a growing need and the threat of improper influence is most acute. We introduce the new approach, give detailed cryptographic protocols, show how it can be applied to several voting settings, and describe our implementation. The protocols compose a full voting system, which we call {\it {\votexx}}, including registration, voting, nullification, and tallying---using an anonymous communication system for registration, vote casting, and other communication in the system. We demonstrate how the technique can be applied to known systems, including where ballots can be mailed to voters and voters use codes on the ballot to cast their votes online. In comparison with previous proposals, our system makes fewer assumptions and protects against a strong adversary who learns all of the voter's keys. In {\votexx}, each voter has two public-private key pairs. Without revealing their private keys, each voter registers their public keys with the election authority. Each voter may share their keys with one or more hedgehogs. During nullification, the voter, or one or more of their hedgehogs, can interact through the anonymous communication system to nullify a vote by proving knowledge of one of the voter's private keys via a zero-knowledge proof without revealing the private key. We describe a fully decentralizable implementation of {\votexx}, including its public bulletin board, which could be implemented on a blockchain. 
    more » « less
  5. A boardroom election is an election that takes place in a single room — the boardroom — in which all voters can see and hear each other. We present an initial exploration of boardroom elections with ballot privacy and voter verifiability that use only “low-tech cryptography” without using computers to mark or collect ballots. Specifically, we define the problem, introduce several building blocks, and propose a new protocol that combines these blocks in novel ways. Our new building blocks include “foldable ballots” that can be rotated to hide the alignment of ballot choices with voting marks, and “visual secrets” that are easy to remember and use but hard to describe. Although closely seated participants in a boardroom election have limited privacy, the protocol ensures that no one can determine how others voted. Moreover, each voter can verify that their ballot was correctly cast, collected, and counted, without being able to prove how they voted, providing assurance against undue influence. Low-tech cryptography is useful in situations where constituents do not trust computer technology, and it avoids the complex auditing requirements of end-to-end cryptographic voting systems such as Prêt-à-Voter. This paper’s building blocks and protocol are meant to be a proof of concept that might be tested for usability and improved. 
    more » « less