skip to main content


Title: Shadow enhancers can suppress input transcription factor noise through distinct regulatory logic
In all higher organisms, life begins with a single cell. During the early stages of development, this single cell grows and divides multiple times to develop into the many different kinds of cells that make up an organism. This is a highly regulated process during which cells receive instructions telling them what kind of cell to become. These instructions are relayed via genes, and a particular combination of activated genes determines the cell’s fate. Specific pieces of DNA, known as enhancers, act as switches that control when and where genes are active, while so-called shadow enhancers are found in groups and work together to turn on the same gene in a similar way. Shadow enhancers are often active during the early stages of life to direct the formation of specialized cells in different parts of the body. But so far, it has been unclear why it is beneficial to the divide the role of activating genes across several shadow enhancers rather than a single one. Here, Waymack et al. examined shadow enhancers around a gene called Kruppel in embryos of the fruit fly Drosophila melanogaster . Manipulating the shadow enhancers showed that they help to make gene activity more resistant to changes. Factors such as fluctuations in temperature have different effects on each shadow enhancer. Having several shadow enhancers working together ensures that, whatever happens, the right genes still get activated. For genes like Kruppel , which are key for healthy development, the ability to withstand unexpected changes is a valuable evolutionary benefit. The study of Waymack et al. reveals why shadow enhancers are involved in the regulation of many genes, which may help to better understand developmental defects. Many conditions caused by such defects are influenced by both genetics and the environment. Genetic illnesses can vary in severity, which may be related to the roles of shadow enhancers. As such, studying shadow enhancers could lead to new approaches for treating genetic diseases.  more » « less
Award ID(s):
1763272
NSF-PAR ID:
10222867
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
eLife
Volume:
9
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Organisms switch their genes on and off to adapt to changing environments. This takes place thanks to complex networks of regulators that control which genes are actively ‘read’ by the cell to create the RNA molecules that are needed at the time. Piecing together these networks is key to fully understand the inner workings of living organisms, and how to potentially modify or artificially create them. Single-cell RNA sequencing is a powerful new tool that can measure which genes are turned on (or ‘expressed’) in an individual cell. Datasets with millions of gene expression profiles for individual cells now exist for organisms such as mice or humans. Yet, it is difficult to use these data to reconstruct networks of regulators; this is partly because scientists are not sure if the computational methods normally used to build these networks also work for single-cell RNA sequencing data. One way to check if this is the case is to use the methods on single-cell datasets from organisms where the networks of regulators are already known, and check whether the computational tools help to reach the same conclusion. Unfortunately, the regulatory networks in the organisms for which scientists have a lot of single-cell RNA sequencing data are still poorly known. There are living beings in which the networks are well characterised – such as yeast – but it has been difficult to do single-cell sequencing in them at the scale seen in other organisms. Jackson, Castro et al. first adapted a system for single-cell sequencing so that it would work in yeast. This generated a gene expression dataset of over 40,000 yeast cells. They then used a computational method (called the Inferelator) on these data to construct networks of regulators, and the results showed that the method performed well. This allowed Jackson, Castro et al. to start mapping how different networks connect, for example those that control the response to the environment and cell division. This is one of the benefits of single-cell RNA methods: cell division for example is not a process that can be examined at the level of a population, since the cells may all be at different life stages. In the future, the dataset will also be useful to scientists to benchmark a variety of single cell computational tools. 
    more » « less
  2. null (Ed.)
    Cells adapt and respond to changes by regulating the activity of their genes. To turn genes on or off, they use a family of proteins called transcription factors. Transcription factors influence specific but overlapping groups of genes, so that each gene is controlled by several transcription factors that act together like a dimmer switch to regulate gene activity. The presence of transcription factors attracts proteins such as the Mediator complex, which activates genes by gathering the protein machines that read the genes. The more transcription factors are found near a specific gene, the more strongly they attract Mediator and the more active the gene is. A specific region on the transcription factor called the activation domain is necessary for this process. The biochemical sequences of these domains vary greatly between species, yet activation domains from, for example, yeast and human proteins are often interchangeable. To understand why this is the case, Sanborn et al. analyzed the genome of baker’s yeast and identified 150 activation domains, each very different in sequence. Three-quarters of them bound to a subunit of the Mediator complex called Med15. Sanborn et al. then developed a machine learning algorithm to predict activation domains in both yeast and humans. This algorithm also showed that negatively charged and greasy regions on the activation domains were essential to be activated by the Mediator complex. Further analyses revealed that activation domains used different poses to bind multiple sites on Med15, a behavior known as ‘fuzzy’ binding. This creates a high overall affinity even though the binding strength at each individual site is low, enabling the protein complexes to remain dynamic. These weak interactions together permit fine control over the activity of several genes, allowing cells to respond quickly and precisely to many changes. The computer algorithm used here provides a new way to identify activation domains across species and could improve our understanding of how living things grow, adapt and evolve. It could also give new insights into mechanisms of disease, particularly cancer, where transcription factors are often faulty. 
    more » « less
  3. The DNA inside human cells provides instructions for all of the processes that happen inside the body. Errors in the DNA may lead to cancer, sickle cell disease, cystic fibrosis, Huntington’s disease, or other genetic disorders. Medical researchers are exploring whether it is possible to replace or repair the faulty DNA (an approach known as gene therapy) to reduce the symptoms, or even cure individuals, of these conditions. Over the last ten years, a new technology known as CRISPR-Cas9 gene editing has proved to be a reliable and efficient way to make small and precise changes to DNA in living cells. First, an enzyme called Cas9 searches for a segment of target DNA segment that matches a template molecule the enzyme carries. Cas9 then cuts the target DNA, which is repaired to match a new customized DNA sequence: this changes the genetic information of the cell. The Cas9 protein is made of a succession of building blocks called amino acids that create long chains which then fold to form the final three-dimensional shape of the enzyme. A region of Cas9 known as the HNH domain is responsible for cutting the target DNA. However, it remains unclear exactly which amino acids within this domain work together to sever the DNA. Here, Zuo et al. combined computational and experimental approaches to reveal the three-dimensional structure of the Cas9 enzyme when the HNH domain is poised to cut the target DNA. The findings were used to generate a computational model of Cas9 and this model predicted that the HNH domain relies on a group of three amino acids known collectively as D839-H840-N863 to cleave DNA strands. This knowledge is useful to understand exactly how Cas9 modifies genetic information. Ultimately, this may help to improve CRISPR-Cas9 technology so it could be safely used in geneediting therapies. 
    more » « less
  4. The human genome contains all the instructions needed to build the human body. However, each human cell does not read all of these instructions, which come in the form of genes encoded in the DNA. Instead, different subsets of genes are switched on in each type of cell, while the rest of the genes are switched off. DNA within human cells is wrapped around proteins called histones, to form hundreds of thousands of structures called nucleosomes. If the DNA that encodes a gene contains a lot of nucleosomes, the DNA is not very accessible and the gene will generally be off; removing the histones or rearranging the nucleosomes can turn the gene on. Each histone contains a region called a tail – because it protrudes like the tail of a cat – that can be chemically modified in dozens of different ways. Particular combinations of histone modifications are thought to signal how the nucleosomes should be arranged so that each gene is properly regulated. However, it is unclear how these combinations of modifications actually work because, historically, it has been difficult to study tails in the context of a nucleosome. Instead most studies had looked at tails that had been removed from the nucleosome. Now, Morrison et al. set out to investigate how one protein, called BPTF, recognizes a specific chemical modification on the tail of a histone, referred to as H3K4me3, in the context of a human nucleosome. Unexpectedly, the experiments showed that the histone-binding domain of BPTF, which binds to H3K4me3, was impeded when the tail was attached to the nucleosome but not when it was removed from the nucleosome. Morrison et al. went on to show that this was because the histone tail is tucked onto the rest of the nucleosome and not easily accessible. Further experiments revealed that additional chemical modifications made the tail more accessible, making it easier for the histone-binding domain to bind. Together these findings show that a combination of histone modifications acts to positively regulate the binding of a regulatory protein to H3K4me3 in the context of the nucleosome by actually regulating the nucleosome itself. The disruption of the histone signals is known to lead to a number of diseases, including cancer, autoimmune disease, and neurological disorders, and these findings could guide further research that may lead to new treatments. Yet first, much more work is needed to investigate how other histone modifications are recognized in the context of the nucleosome, and how the large number of possible combinations of histone signals affects this process. 
    more » « less
  5. Most animals – including birds, fish and mammals – have symmetrical left and right sides, and are known as bilaterians. During early life, the embryos of animals in this group develop three distinct layers of cells: the ectoderm (outer layer), the endoderm (inner layer), and the mesoderm (middle layer). These layers then go on to form the animal’s tissues and organs. The ectoderm produces external tissues, such as the skin and the nervous system; the endoderm forms internal tissues, like the gut; and the mesoderm creates all tissues in between, like muscles and blood. Another, smaller group of animals, called cnidarians, do not have left and right sides. Instead, they have a ‘radial symmetry’, meaning they have multiple identical parts arranged in a circle. These animals – which include corals, jellyfish and sea anemones – only develop two distinct layers of cells, equivalent to the outer and inner layers of bilaterians. Cnidarians evolved before bilaterians, but their genetic material is equally complex. So why did these two groups evolve to have different layers of cells? And how exactly do animal embryos develop these distinct layers? To address these questions, Salinas-Saavedra et al. studied embryos of the sea anemone Nematostella vectensis. Molecules called Par-proteins play an important role in controlling how cells behave and attach to one another (and therefore how they form layers). So, using a technique called immunohistochemistry to look inside cells, Salinas-Saavedra et al. examined these proteins in the two layers of cells in sea anemone embryos. The experiments found that in the sea anemones, Par-proteins are arranged differently in cells that form the ‘skin’ compared to cells that form the ‘gut’. In other words, cells in the outer layer attach to one another in a different way than cells in the inner layer, where the Par-proteins are degraded by ‘mesodermal’ genes. The findings also show that these sea anemones have all they need to form a third middle layer of cells. Like bilaterians, they could potentially move cells in and out of sheets that line surfaces inside the body – but they do not naturally do this. Understanding how animals form different layers of cells is important for scientists studying evolution and the development of embryos. However, it also has wider applications. For instance, some cells involved in developing the mesoderm are also involved in forming tumors. Future research in this area could help scientists learn more about how cancer-like cells form in animals. 
    more » « less