skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Target-capture phylogenomics provide insights on gene and species tree discordances in Old World treefrogs (Anura: Rhacophoridae)
Genome-scale data have greatly facilitated the resolution of recalcitrant nodes that Sanger-based datasets have been unable to resolve. However, phylogenomic studies continue to use traditional methods such as bootstrapping to estimate branch support; and high bootstrap values are still interpreted as providing strong support for the correct topology. Furthermore, relatively little attention has been given to assessing discordances between gene and species trees, and the underlying processes that produce phylogenetic conflict. We generated novel genomic datasets to characterize and determine the causes of discordance in Old World treefrogs (Family: Rhacophoridae)—a group that is fraught with conflicting and poorly supported topologies among major clades. Additionally, a suite of data filtering strategies and analytical methods were applied to assess their impact on phylogenetic inference. We showed that incomplete lineage sorting was detected at all nodes that exhibited high levels of discordance. Those nodes were also associated with extremely short internal branches. We also clearly demonstrate that bootstrap values do not reflect uncertainty or confidence for the correct topology and, hence, should not be used as a measure of branch support in phylogenomic datasets. Overall, we showed that phylogenetic discordances in Old World treefrogs resulted from incomplete lineage sorting and that species tree inference can be improved using a multi-faceted, total-evidence approach, which uses the most amount of data and considers results from different analytical methods and datasets.  more » « less
Award ID(s):
1654388
PAR ID:
10222896
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
287
Issue:
1940
ISSN:
0962-8452
Page Range / eLocation ID:
20202102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Blaimer, Bonnie (Ed.)
    Abstract A rapid proliferation in the availability of whole genome sequences (WGS), often with relatively low read depth, offers an unprecedented opportunity for phylogenomic advances using publicly available data, but there are several key challenges in applying these data. Using low‐coverage WGS data for the ant species ofFormica, we conducted detailed comparisons on two different analytical pipelines (reference‐based vs. de novo genome assembly), four types of datasets (5‐kbp‐window, ultra‐conserved element [UCE], single‐copy ortholog [BUSCO] and mitogenome), and a series of analytical procedures (e.g. concatenation vs. coalescent analyses) to identify which are robust to typical WGS data. The results show that at a shallow scale of phylogenetic relationships of closely related species 5‐kbp‐windows from the reference‐based pipeline and UCEs from the de novo assemblies are more successful than the BUSCOs in recovering informative markers for phylogenetic inference. Compared with concatenation analyses, coalescent analyses often resulted in disparate deeper relationships in the phylogeny. This study also uncovers evident mito‐nuclear discordance and demonstrates genome‐wide gene conflicts in phylogenetic signals, both pointing to possible incomplete lineage sorting and/or hybridization during the early, rapid radiation ofFormicaants. Divergence dating analyses show that different types of data and analytical methods could result in inconsistent time estimates, highlighting the potential need for multiple approaches to better understand species divergence. The strengths and weaknesses of different analytical pipelines and strategies are discussed. Findings from this study provide valuable insights for large‐scale phylogenomic projects using WGS data. 
    more » « less
  2. Abstract Rapid species radiations present difficulties for phylogenetic reconstruction due to lack of phylogenetic information and processes such as deep coalescence/incomplete lineage sorting and hybridization. Phylogenomic data can overcome some of these difficulties. In this study, we use anchored hybrid enrichment (AHE) nuclear phylogenomic data and mitochondrial genomes recovered from AHE bycatch with several concatenated and coalescent approaches to reconstruct the poorly resolved radiation of the New Zealand cicada species in the generaKikihiaDugdale andMaoricicadaDugdale. Compared with previous studies using only three to five Sanger‐sequenced genes, we find increased resolution across our phylogenies, but several branches remain unresolved due to topological conflict among genes. Some nodes that are strongly supported by traditional support measures like bootstraps and posterior probabilities still show significant gene and site concordance conflict. In addition, we find strong mito‐nuclear discordance; likely the result of interspecific hybridization events in the evolutionary history ofKikihiaandMaoricicada. 
    more » « less
  3. Kubatko, Laura (Ed.)
    Abstract Many recent phylogenetic methods have focused on accurately inferring species trees when there is gene tree discordance due to incomplete lineage sorting (ILS). For almost all of these methods, and for phylogenetic methods in general, the data for each locus are assumed to consist of orthologous, single-copy sequences. Loci that are present in more than a single copy in any of the studied genomes are excluded from the data. These steps greatly reduce the number of loci available for analysis. The question we seek to answer in this study is: what happens if one runs such species tree inference methods on data where paralogy is present, in addition to or without ILS being present? Through simulation studies and analyses of two large biological data sets, we show that running such methods on data with paralogs can still provide accurate results. We use multiple different methods, some of which are based directly on the multispecies coalescent model, and some of which have been proven to be statistically consistent under it. We also treat the paralogous loci in multiple ways: from explicitly denoting them as paralogs, to randomly selecting one copy per species. In all cases, the inferred species trees are as accurate as equivalent analyses using single-copy orthologs. Our results have significant implications for the use of ILS-aware phylogenomic analyses, demonstrating that they do not have to be restricted to single-copy loci. This will greatly increase the amount of data that can be used for phylogenetic inference.[Gene duplication and loss; incomplete lineage sorting; multispecies coalescent; orthology; paralogy.] 
    more » « less
  4. Next-generation sequencing technologies have facilitated new phylogenomic approaches to help clarify previously intractable relationships while simultaneously highlighting the pervasive nature of incongruence within and among genomes that can complicate definitive taxonomic conclusions. Salvia L., with ∼1,000 species, makes up nearly 15% of the species diversity in the mint family and has attracted great interest from biologists across subdisciplines. Despite the great progress that has been achieved in discerning the placement of Salvia within Lamiaceae and in clarifying its infrageneric relationships through plastid, nuclear ribosomal, and nuclear single-copy genes, the incomplete resolution has left open major questions regarding the phylogenetic relationships among and within the subgenera, as well as to what extent the infrageneric relationships differ across genomes. We expanded a previously published anchored hybrid enrichment dataset of 35 exemplars of Salvia to 179 terminals. We also reconstructed nearly complete plastomes for these samples from off-target reads. We used these data to examine the concordance and discordance among the nuclear loci and between the nuclear and plastid genomes in detail, elucidating both broad-scale and species-level relationships within Salvia . We found that despite the widespread gene tree discordance, nuclear phylogenies reconstructed using concatenated, coalescent, and network-based approaches recover a common backbone topology. Moreover, all subgenera, except for Audibertia , are strongly supported as monophyletic in all analyses. The plastome genealogy is largely resolved and is congruent with the nuclear backbone. However, multiple analyses suggest that incomplete lineage sorting does not fully explain the gene tree discordance. Instead, horizontal gene flow has been important in both the deep and more recent history of Salvia . Our results provide a robust species tree of Salvia across phylogenetic scales and genomes. Future comparative analyses in the genus will need to account for the impacts of hybridization/introgression and incomplete lineage sorting in topology and divergence time estimation. 
    more » « less
  5. Abstract We reconstruct the species-level phylogenetic relationship among toucans, toucan-barbets, New World barbets using phylogenomic data to assess the monophyly and relationships at the family, generic, and specific levels. Our analyses confirmed (1) the monophyly of toucans (Aves: Ramphastidae), toucan-barbets (Aves: Semnornithidae), and New World barbets (Aves: Capitonidae) and that the toucan-barbets are sister to the toucans, an arrangement suggested, but poorly supported, in previously published phylogenies; (2) the paraphyly of lowland Selenidera toucanets with respect to Andigena mountain-toucans; and (3) evidence of some mitonuclear discordance, suggesting introgression or incomplete lineage sorting. For example, mitonuclear conflict in the phylogenetic placement of Ramphastos vitellinus subspecies suggests that Amazonian populations of Ramphastos vitellinus ariel may have introgressed mitogenomes derived from other Amazonian vitellinus taxa. To reconstruct the phylogenetic history of toucans, toucan-barbets, and New World barbets, we included all species-level taxa from the three families, with the addition of outgroups from the two major clades of Old World barbets (Megalaimidae and Lybiidae). We analyzed a combination of UCE sequences and whole mitochondrial genome sequences to reconstruct phylogenetic trees. 
    more » « less