skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Divergence-Based Introgression Polarization
Abstract Introgressive hybridization results in the transfer of genetic material between species, often with fitness implications for the recipient species. The development of statistical methods for detecting the signatures of historical introgression in whole-genome data has been a major area of focus. Although existing techniques are able to identify the taxa that exchanged genes during introgression using a four-taxon system, most methods do not explicitly distinguish which taxon served as donor and which as recipient during introgression (i.e., polarization of introgression directionality). Existing methods that do polarize introgression are often only able to do so when there is a fifth taxon available and that taxon is sister to one of the taxa involved in introgression. Here, we present divergence-based introgression polarization (DIP), a method for polarizing introgression using patterns of sequence divergence across whole genomes, which operates in a four-taxon context. Thus, DIP can be applied to infer the directionality of introgression when additional taxa are not available. We use simulations to show that DIP can polarize introgression and identify potential sources of bias in the assignment of directionality, and we apply DIP to a well-described hominin introgression event.  more » « less
Award ID(s):
1713849
PAR ID:
10223018
Author(s) / Creator(s):
; ;
Editor(s):
Tenaillon, Maud
Date Published:
Journal Name:
Genome Biology and Evolution
Volume:
12
Issue:
4
ISSN:
1759-6653
Page Range / eLocation ID:
463 to 478
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Hybridisation is a common feature of evolutionary radiations, but its genomic consequences vary depending on when it occurs. Since reproductive isolation takes time to accumulate, hybridisation can occur at multiple points during divergence. Previous studies suggested that the taxonomic diversity in evolutionary radiations can help infer the timing of past gene flow events. Here, we assess the power of these approaches for revealing when gene flow occurred between two monkeyflower taxa (Mimulus aurantiacus) endemic to the Channel Islands of California. Coalescent simulations reveal that conventional four‐taxon tests may not be capable of fully distinguishing between recent and ancient introgression, but genome‐wide patterns of phylogenetic discordance vary predictably with different histories of hybridisation. Using whole‐genome sequencing and phylogenetic tests for introgression across theM. aurantiacusradiation, we identify signals of both ancient and recent hybridisation that occurred between the island taxa and their ancestors. In addition, we find widespread selection against introgressed ancestry, consistent with polygenic barriers to gene flow. However, we also identify localised signals across the genome that may indicate adaptive introgression. This study highlights the power and challenges of trying to disentangle complex histories of hybridisation. More broadly, our results illustrate the multiple roles that gene flow can play in evolutionary radiations: hybridisation can expose genetic incompatibilities that contribute to reproductive isolation while also likely facilitating adaptation by transferring beneficial alleles between taxa. These findings underscore the dynamic interplay between the timing of hybridisation and natural selection in shaping evolutionary trajectories within radiations. 
    more » « less
  2. Yoder, Anne (Ed.)
    Abstract Over the past 15 years, the D-statistic, a four-taxon test for organismal admixture (hybridization, or introgression) which incorporates single nucleotide polymorphism data with allelic patterns ABBA and BABA, has seen considerable use. This statistic seeks to discern significant deviation from either a given species tree assumption, or from the balanced incomplete lineage sorting that could otherwise defy this species tree. However, while the D-statistic can successfully discriminate admixture from incomplete lineage sorting, it is not a simple matter to determine the directionality of admixture using only four-leaf tree models. As such, methods have been developed that use 5 leaves to evaluate admixture. Among these, the DFOIL method, which tests allelic patterns on the “symmetric” tree S = (((1,2),(3,4)),5), succeeds in finding admixture direction for many five-taxon examples. However, DFOIL does not make full use of all symmetry, nor can DFOIL function properly when ancient samples are included because of the reliance on singleton patterns (such as BAAAA and ABAAA). Here, we take inspiration from DFOIL to develop a new and completely general family of five-leaf admixture tests, dubbed Δ-statistics, that can either incorporate or exclude the singleton allelic patterns depending on individual taxon and age sampling choices. We describe two new shapes that are also fully testable, namely the “asymmetric” tree A = ((((1,2),3),4),5) and the “quasisymmetric” tree Q = (((1,2),3),(4,5)), which can considerably supplement the “symmetric“ S = (((1,2),(3,4)),5) model used by DFOIL. We demonstrate the consistency of Δ-statistics under various simulated scenarios, and provide empirical examples using data from black, brown and polar bears, the latter also including two ancient polar bear samples from previous studies. Recently DFOIL and one of these ancient samples was used to argue for a dominant polar bear → brown bear introgression direction. However, we find, using both this ancient polar bear and our own, that by far the strongest signal using both DFOIL and Δ-statistics on tree S is actually bidirectional gene flow of indistinguishable direction. Further experiments on trees A and Q instead highlight what were likely two phases of admixture: one with stronger brown bear → polar bear introgression in ancient times, and a more recent phase with predominant polar bear → brown bear directionality. Code and documentation available at https://github.com/KalleLeppala/Delta-statistics. 
    more » « less
  3. Recent research shows that introgression between closely-related species is an important source of adaptive alleles for a wide range of taxa. Typically, detection of adaptive introgression from genomic data relies on comparative analyses that require sequence data from both the recipient and the donor species. However, in many cases, the donor is unknown or the data is not currently available. Here, we introduce a genome-scan method—VolcanoFinder—to detect recent events of adaptive introgression using polymorphism data from the recipient species only. VolcanoFinder detects adaptive introgression sweeps from the pattern of excess intermediate-frequency polymorphism they produce in the flanking region of the genome, a pattern which appears as a volcano-shape in pairwise genetic diversity. Using coalescent theory, we derive analytical predictions for these patterns. Based on these results, we develop a composite-likelihood test to detect signatures of adaptive introgression relative to the genomic background. Simulation results show that VolcanoFinder has high statistical power to detect these signatures, even for older sweeps and for soft sweeps initiated by multiple migrant haplotypes. Finally, we implement VolcanoFinder to detect archaic introgression in European and sub-Saharan African human populations, and uncovered interesting candidates in both populations, such as TSHR in Europeans and TCHH-RPTN in Africans. We discuss their biological implications and provide guidelines for identifying and circumventing artifactual signals during empirical applications of VolcanoFinder. 
    more » « less
  4. Abstract Phylogenomic analyses are recovering previously hidden histories of hybridization, revealing the genomic consequences of these events on the architecture of extant genomes. We applied phylogenomic techniques and several complementary statistical tests to show that introgressive hybridization appears to have occurred between close relatives of Arabidopsis, resulting in cytonuclear discordance and impacting our understanding of species relationships in the group. The composition of introgressed and retained genes indicates that selection against incompatible cytonuclear and nuclear-nuclear interactions likely acted during introgression, while linkage also contributed to genome composition through the retention of ancient haplotype blocks. We also applied divergence-based tests to determine the species branching order and distinguish donor from recipient lineages. Surprisingly, these analyses suggest that cytonuclear discordance arose via extensive nuclear, rather than cytoplasmic, introgression. If true, this would mean that most of the nuclear genome was displaced during introgression, while only a small proportion of native alleles were retained. 
    more » « less
  5. Ralph, P (Ed.)
    Abstract Detecting introgression between closely related populations or species is a fundamental objective in evolutionary biology. Existing methods for detecting migration and inferring migration rates from population genetic data often assume a neutral model of evolution. Growing evidence of the pervasive impact of selection on large portions of the genome across diverse taxa suggests that this assumption is unrealistic in most empirical systems. Further, ignoring selection has previously been shown to negatively impact demographic inferences (e.g. of population size histories). However, the impacts of biologically realistic selection on inferences of migration remain poorly explored. Here, we simulate data under models of background selection, selective sweeps, balancing selection, and adaptive introgression. We show that ignoring selection sometimes leads to false inferences of migration in popularly used methods that rely on the site frequency spectrum. Specifically, balancing selection and some models of background selection result in the rejection of isolation-only models in favor of isolation-with-migration models and lead to elevated estimates of migration rates. BPP, a method that analyzes sequence data directly, showed false positives for all conditions at recent divergence times, but balancing selection also led to false positives at medium-divergence times. Our results suggest that such methods may be unreliable in some empirical systems, such that new methods that are robust to selection need to be developed. 
    more » « less