Abstract Many reaction networks arising in applications are multistationary, that is, they have the capacity for more than one steady state, while some networks exhibit absolute concentration robustness (ACR), which means that some species concentration is the same at all steady states. Both multistationarity and ACR are significant in biological settings, but only recently has attention focused on the possibility for these properties to coexist. Our main result states that such coexistence in at-most-bimolecular networks (which encompass most networks arising in biology) requires at least three species, five complexes and three reactions. We prove additional bounds on the number of reactions for general networks based on the number of linear conservation laws. Finally, we prove that, outside of a few exceptional cases, ACR is equivalent to non-multistationarity for bimolecular networks that are small (more precisely, one-dimensional or up to two species). Our proofs involve analyses of systems of sparse polynomials, and we also use classical results from chemical reaction network theory.
more »
« less
Absolutely robust controllers for chemical reaction networks
In this work, we design a type of controller that consists of adding a specific set of reactions to an existing mass-action chemical reaction network in order to control a target species. This set of reactions is effective for both deterministic and stochastic networks, in the latter case controlling the mean as well as the variance of the target species. We employ a type of network property called absolute concentration robustness (ACR). We provide applications to the control of a multisite phosphorylation model as well as a receptor–ligand signalling system. For this framework, we use the so-called deficiency zero theorem from chemical reaction network theory as well as multiscaling model reduction methods. We show that the target species has approximately Poisson distribution with the desired mean. We further show that ACR controllers can bring robust perfect adaptation to a target species and are complementary to a recently introduced antithetic feedback controller used for stochastic chemical reactions.
more »
« less
- Award ID(s):
- 1763272
- PAR ID:
- 10223024
- Date Published:
- Journal Name:
- Journal of The Royal Society Interface
- Volume:
- 17
- Issue:
- 166
- ISSN:
- 1742-5689
- Page Range / eLocation ID:
- 20200031
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We consider particle-based stochastic reaction-drift-diffusion models where particles move via diffusion and drift induced by one- and two-body potential interactions. The dynamics of the particles are formulated as measure-valued stochastic processes (MVSPs), which describe the evolution of the singular, stochastic concentration fields of each chemical species. The mean field large population limit of such models is derived and proven, giving coarse-grained deterministic partial integro-differential equations (PIDEs) for the limiting deterministic concentration fields’ dynamics. We generalize previous studies on the mean field limit of models involving only diffusive motion, with care to formulating the MVSP representation to ensure detailed balance of reversible reactions in the presence of potentials. Our work illustrates the more general set of PIDEs that arise in the mean field limit, demonstrating that the limiting macroscopic reactive interaction terms for reversible reactions obtain additional nonlinear concentration-dependent coefficients compared to the purely diffusive case. Numerical studies are presented which illustrate that two-body repulsive potential interactions can have a significant impact on the reaction dynamics, and also demonstrate the empirical numerical convergence of solutions to the PBSRDD model to the derived mean field PIDEs as the population size increases.more » « less
-
Well-mixed chemical reaction networks (CRNs) contain many distinct chemical species with copy numbers that fluctuate in correlated ways. While those correlations are typically monitored via Monte Carlo sampling of stochastic trajectories, there is interest in systematically approximating the joint distribution over the exponentially large number of possible microstates using tensor networks or tensor trains. We exploit the tensor network strategy to determine when the steady state of a seven-species gene toggle switch CRN model supports bistability as a function of two decomposition rates, both parameters of the kinetic model. We highlight how the tensor network solution captures the effects of stochastic fluctuations, going beyond mean field and indeed deviating meaningfully from a mean-field analysis. The work furthermore develops and demonstrates several technical advances that will allow steady-states of broad classes of CRNs to be computed in a manner conducive to parameter exploration. We show that the steady-state distributions can be computed via the ordinary density matrix renormalization group (DMRG) algorithm, despite having a non-Hermitian rate operator with a small spectral gap, we illustrate how that steady-state distribution can be efficiently projected to an order parameter that identifies bimodality, and we employ excited-state DMRG to calculate a relaxation timescale for the bistability.more » « less
-
null (Ed.)We consider a general class of finite-horizon online decision-making problems, where in each period a controller is presented a stochastic arrival and must choose an action from a set of permissible actions, and the final objective depends only on the aggregate type-action counts. Such a framework encapsulates many online stochastic variants of common optimization problems including bin packing, generalized assignment, and network revenue management. In such settings, we study a natural model-predictive control algorithm that in each period, acts greedily based on an updated certainty-equivalent optimization problem. We introduce a simple, yet general, condition under which this algorithm obtains uniform additive loss (independent of the horizon) compared to an optimal solution with full knowledge of arrivals. Our condition is fulfilled by the above-mentioned problems, as well as more general settings involving piece-wise linear objectives and offline index policies, including an airline overbooking problem.more » « less
-
null (Ed.)Chemical reaction networks describe interactions between biochemical species. Once an underlying reaction network is given for a biochemical system, the system dynamics can be modelled with various mathematical frameworks such as continuous-time Markov processes. In this manuscript, the identifiability of the underlying network structure with a given stochastic system dynamics is studied. It is shown that some data types related to the associated stochastic dynamics can uniquely identify the underlying network structure as well as the system parameters. The accuracy of the presented network inference is investigated when given dynamical data are obtained via stochastic simulations.more » « less
An official website of the United States government

