A study of the learnability of relational properties: Model counting meets machine learning (MCML)
- Award ID(s):
- 1718903
- PAR ID:
- 10223399
- Date Published:
- Journal Name:
- 41st ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI)
- Page Range / eLocation ID:
- 1098 to 1111
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Recent advancements in nanofabrication technology has led to commercialization of single-chip polarization and color-polarization imaging sensors in the visible spectrum. Novel applications have arisen with the emergence of these sensors leading to questions about noise in the reconstructed polarization images. In this paper, we provide theoretical analysis for the input and output referred noise for the angle and degree of linear polarization information. We validated our theoretical model with experimental data collected from a division of focal plane polarization sensor. Our data indicates that the noise in the angle of polarization images depends on both incident light intensity and degree of linear polarization and is independent of the incident angle of polarization. However, noise in degree of linear polarization images depends on all three parameters: incident light intensity, angle and degree of linear polarization. This theoretical model can help guide the development of imaging setups to record optimal polarization information.more » « less
-
null (Ed.)A unified approach to the determination of eigenvalues and eigenvectors of specific matrices associated with directed graphs is presented. Matrices studied include the new distance matrix, with natural extensions to the distance Laplacian and distance signless Laplacian, in addition to the new adjacency matrix, with natural extensions to the Laplacian and signless Laplacian. Various sums of Kronecker products of nonnegative matrices are introduced to model the Cartesian and lexicographic products of digraphs. The Jordan canonical form is applied extensively to the analysis of spectra and eigenvectors. The analysis shows that Cartesian products provide a method for building infinite families of transmission regular digraphs with few distinct distance eigenvalues.more » « less