skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Population genomic and historical analysis suggests a global invasion by bridgehead processes in Mimulus guttatus
Abstract Imperfect historical records and complex demographic histories present challenges for reconstructing the history of biological invasions. Here, we combine historical records, extensive worldwide and genome-wide sampling, and demographic analyses to investigate the global invasion of Mimulus guttatus from North America to Europe and the Southwest Pacific. By sampling 521 plants from 158 native and introduced populations genotyped at >44,000 loci, we determined that invasive M. guttatus was first likely introduced to the British Isles from the Aleutian Islands (Alaska), followed by admixture from multiple parts of the native range. We hypothesise that populations in the British Isles then served as a bridgehead for vanguard invasions worldwide. Our results emphasise the highly admixed nature of introduced M. guttatus and demonstrate the potential of introduced populations to serve as sources of secondary admixture, producing novel hybrids. Unravelling the history of biological invasions provides a starting point to understand how invasive populations adapt to novel environments.  more » « less
Award ID(s):
1754080
PAR ID:
10223666
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Communications Biology
Volume:
4
Issue:
1
ISSN:
2399-3642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the mechanisms governing biological invasions has implications for population dynamics, biodiversity, and community assembly. The enemy escape hypothesis posits that escape from enemies such as herbivores and predators that were limiting in the native range helps explain rapid spread in the introduced range. While the enemy escape hypothesis has been widely tested aboveground, data limitations have prevented comparisons of belowground mechanisms for invasive and noninvasive introduced species, which limits our understanding of why only some introduced species become invasive. We assessed the role of soil biota in driving plant invasions in a phylogenetic meta−analysis, incorporating phylogeny in the error structure of the models, and comparing live and sterilized conditioned soils. We found 29 studies and 396 effect size estimates across 103 species that compared live and sterilized soils. We found general positive effects of soil biota for plants (0.099, 95% CI = 0.0266, 0.1714), consistent with a role of soil mutualists. The effect size of soil biota among invaders was 3.2× higher than for natives, the strength of effects was weaker for older conditioning species with a longer introduced history, and enemy escape was stronger for distant relatives. In addition, invasive species had a weaker allocation tradeoff than natives. By demonstrating that the net effect of soil biota is more positive for invasive than native and noninvasive introduced species, weakens over time since introduction, and strengthens as phylogenetic distance increasing, we provide mechanistic insights into the considerable role of soil biota in biological invasions, consistent with the predictions of the enemy escape hypothesis. 
    more » « less
  2. ABSTRACT The aftermath of the North American fur trade resulted in the depletion of many furbearing mammal populations in their native North American range while simultaneously creating invasive populations of these species through translocations worldwide. Here, we document the ongoing results of this mass ecological experiment by describing the natural history of a remnant fur colony of muskrats (Ondatra zibethicus) putatively introduced to the Isles of Shoals archipelago in the Gulf of Maine in the early 20th century. Through a combination of intensive surveys and camera trapping, we document how muskrats have been influenced by insular conditions under expectations of island biogeographic theory. Unlike other translocated muskrats that have produced successful wetland‐restricted populations in continental Europe and Asia, the Shoals muskrats appear to have shifted their habitat use and lodge building behavior and have encountered a new predator: gulls (Laridae). This Nature Note formalizes decades of anecdotal observations and provides important insight into the ecological flexibility of muskrats given the paradox of a species that is apparently now declining in its native range but expanding outside of it. 
    more » « less
  3. Abstract Non‐native plant pests and pathogens threaten biodiversity, ecosystem function, food security, and economic livelihoods. As new invasive populations establish, often as an unintended consequence of international trade, they can become additional sources of introductions, accelerating global spread through bridgehead effects. While the study of non‐native pest spread has used computational models to provide insights into drivers and dynamics of biological invasions and inform management, efforts have focused on local or regional scales and are challenged by complex transmission networks arising from bridgehead population establishment. This paper presents a flexible spatiotemporal stochastic network model called PoPS (Pest or Pathogen Spread) Global that couples international trade networks with core drivers of biological invasions—climate suitability, host availability, and propagule pressure—quantified through open, globally available databases to forecast the spread of non‐native plant pests. The modular design of the framework makes it adaptable for various pests capable of dispersing via human‐mediated pathways, supports proactive responses to emerging pests when limited data are available, and enables forecasts at different spatial and temporal resolutions. We demonstrate the framework using a case study of the invasive planthopper spotted lanternfly (Lycorma delicatula). The model was calibrated with historical, known spotted lanternfly introductions to identify potential bridgehead populations that may contribute to global spread. This global view of phytosanitary pandemics provides crucial information for anticipating biological invasions, quantifying transport pathways risk levels, and allocating resources to safeguard plant health, agriculture, and natural resources. 
    more » « less
  4. Understanding the mechanisms governing biological invasions has implications for population dynamics, biodiversity, and community assembly. The enemy escape hypothesis posits that escape from enemies such as herbivores and predators that were limiting in the native range helps explain rapid spread in the introduced range. While the enemy escape hypothesis has been widely tested aboveground, data limitations have prevented comparisons of below- ground mechanisms for invasive and noninvasive introduced species, which limits our understanding of why only some introduced species become invasive. We assessed the role of soil biota in driving plant invasions in a phylogenetic meta−analysis, incorpo- rating phylogeny in the error structure of the models, and comparing live and sterilized conditioned soils. We found 29 studies and 396 effect size estimates across 103 species that compared live and sterilized soils. We found general positive effects of soil biota for plants (0.099, 95% CI 0.0266, 0.1714), consistent with a role of soil mutualists. The effect size of soil biota among invaders was 3.2× higher than for natives, the strength of effects was weaker for older conditioning species with a longer introduced history, and enemy escape was stronger for distant relatives. In addition, invasive species had a weaker allocation tradeoff than natives. By demonstrating that the net effect of soil biota is more positive for invasive than native and noninvasive introduced species, weakens over time since introduction, and strengthens as phy- logenetic distance increasing, we provide mechanistic insights into the considerable role of soil biota in bio- logical invasions, consistent with the predictions of the enemy escape hypothesis. 
    more » « less
  5. Abstract The evolution of postzygotic isolation is thought to be a key step in maintaining species boundaries upon secondary contact, yet the dynamics and persistence of hybrid incompatibilities in naturally hybridizing species are not well understood. Here, we explore these issues using genetic mapping in three independent populations of recombinant inbred lines between naturally hybridizing monkeyflowers,Mimulus guttatusandMimulus nasutus,from the sympatric Catherine Creek population. We discover that the threeM. guttatusfounders differ dramatically in admixture history, with nearly a quarter of one founder's genome introgressed fromM. nasutus. Comparative genetic mapping in the three RIL populations reveals three new putative inversions, each one segregating among theM. guttatusfounders, two due to admixture. We find strong, genome‐wide transmission ratio distortion in all RILs, but patterns are highly variable among the three populations. At least some of this distortion appears to be explained by epistatic selection favouring parental genotypes, but tests of inter‐chromosomal linkage disequilibrium also reveal multiple candidate Dobzhansky‐Muller incompatibilities. We also map several genetic loci for hybrid pollen viability, including two interacting pairs that coincide with peaks of distortion. Remarkably, even with this limited sample of threeM. guttatuslines, we discover abundant segregating variation for hybrid incompatibilities withM. nasutus,suggesting this population harbours diverse contributors to postzygotic isolation. Moreover, even with substantial admixture, hybrid incompatibilities betweenMimulusspecies persist, suggesting postzygotic isolation might be a potent force in maintaining species barriers in this system. 
    more » « less