Abstract The thawing of permafrost in the Arctic has led to an increase in coastal land loss, flooding, and ground subsidence, seriously threatening civil infrastructure and coastal communities. However, a lack of tools for synthetic hazard assessment of the Arctic coast has hindered effective response measures. We developed a holistic framework, the Arctic Coastal Hazard Index (ACHI), to assess the vulnerability of Arctic coasts to permafrost thawing, coastal erosion, and coastal flooding. We quantified the coastal permafrost thaw potential (PTP) through regional assessment of thaw subsidence using ground settlement index. The calculations of the ground settlement index involve utilizing projections of permafrost conditions, including future regional mean annual ground temperature, active layer thickness, and talik thickness. The predicted thaw subsidence was validated through a comparison with observed long-term subsidence data. The ACHI incorporates the PTP into seven physical and ecological variables for coastal hazard assessment: shoreline type, habitat, relief, wind exposure, wave exposure, surge potential, and sea-level rise. The coastal hazard assessment was conducted for each 1 km2coastline of North Slope Borough, Alaska in the 2060s under the Representative Concentration Pathway 4.5 and 8.5 forcing scenarios. The areas that are prone to coastal hazards were identified by mapping the distribution pattern of the ACHI. The calculated coastal hazards potential was subjected to validation by comparing it with the observed and historical long-term coastal erosion mean rates. This framework for Arctic coastal assessment may assist policy and decision-making for adaptation, mitigation strategies, and civil infrastructure planning.
more »
« less
A 5200-year paleoecological and geochemical record of coastal environmental changes and shoreline fluctuations in southwestern Louisiana: Implications for coastal sustainability
- Award ID(s):
- 1759715
- PAR ID:
- 10223760
- Date Published:
- Journal Name:
- Geomorphology
- Volume:
- 365
- Issue:
- C
- ISSN:
- 0169-555X
- Page Range / eLocation ID:
- 107284
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Coastal systems are immensely valuable to humans. They contain unique ecosystems that are biodiversity reservoirs and provide key ecosystem services as well as a wealth of cultural heritage. Despite their importance to humans, many coastal systems are experiencing degradation that threatens their integrity and provisioning of services. While much is known about the plant communities and associated wildlife in coastal areas, the importance of microorganisms represents a large knowledge gap. Here we review the ecology of plant-microbial symbioses in coastal systems, including mycorrhizae, nitrogen fixers, endophytes, rhizosphere microbes, and pathogens. We focus on four common coastal communities: sand dunes, marshes, mangroves, and forests/shrublands. We also assess recent research and the potential for using microbes in coastal restoration efforts to mitigate anthropogenic impacts. We find that microbial symbionts are largely responsible for the health of plants constituting the foundation of coastal communities by affecting plant establishment, growth, competitive ability, and stress tolerance, as well as modulating biogeochemical cycling in these stressful coastal systems. Current use of microbial symbionts to augment restoration of stressful and degraded coastal systems is still very much in its infancy; however, it holds great promise for increasing restoration success on the coast. Much research is still needed to test and develop microbial inocula for facilitating restoration of different coastal systems. This is an excellent opportunity for collaboration between restoration practitioners and microbial ecologists to work toward a common goal of enhancing resilience of our coastal ecosystems at a time when these systems are vulnerable to an increasing number of threats.more » « less
-
Abstract To meet the challenges of hazards impacting coastal communities, demand is growing for more equitable coastal natural hazard adaptation and disaster mitigation approaches, supported by co-productive research partnerships. This review paper outlines contemporary advances in hazard adaptation and disaster mitigation with attention to how an equity and justice framework can address the uneven impacts of hazards on marginalized and underserved communities. Drawing upon the allied concepts of distributive, procedural, systemic, and recognitional equity and justice, we illustrate how these concepts form the basis for equitable coastal resilience. To demonstrate how equitable resilience can effectively advance contemporary adaptation and mitigation strategies, we present two vignettes where collaborative partnerships underscore how equitable coastal hazard planning and response practices complement these processes in coastal zones subject to large earthquakes and tsunamis. The first vignette focuses on disaster response and takes place in the Tohoku region of Japan, with diverse gender and sexual minority community members’ experiences of, and responses to, the 2011 Tohoku disasters. The second vignette centers on hazard planning and takes place on the U.S. Pacific Northwest coast along the Cascadia Subduction Zone to demonstrate how principles of distributive, procedural, systemic, and recognitional equity can inform the co-production of alternative coastal futures that prioritize equitable resilience. From this discussion, we suggest applying an equity lens to research processes, including alternative futures modeling frameworks, to ensure that the benefits of hazard adaptation and disaster mitigation strategies are equitably applied and shared.more » « less
-
Thoman, R.L.; Richter-Menge, J.; Druckenmiller, M.L. (Ed.)Since the early 2000s, observations from 14 coastal permafrost sites have been updated, providing a synopsis of how changes in the Arctic System are intensifying the dynamics of permafrost coasts in the 21st Century. Observations from all but 1 of the 14 permafrost coastal sites around the Arctic indicate that decadal-scale erosion rates are increasing. The US and Canadian Beaufort Sea coasts have experienced the largest increases in erosion rates since the early-2000s. The mean annual erosion rate in these regions has increased by 80 to 160 % at the five sites with available data, with sites in the Canadian Beaufort Sea experiencing the largest relative increase. The sole available site in the Greenland Sea, on southern Svalbard, indicates an increase in mean annual erosion rates by 66 % since 2000, due primarily to a reduction in nearshore sediment supply from glacial recession. At the five sites along the Barents, Kara, and Laptev Seas in Siberia, mean annual erosion rates increased between 33 and 97 % since the early to mid-2000s. The only site to experience a decrease in mean annual erosion (- 40%) was located in the Chukchi Sea in Alaska. Interestingly, the other site in the Chukchi Sea experienced one of the highest increases in mean annual erosion (+160%) over the same period. In general, a considerable increase in the variability of erosion and deposition intensity was also observed along most of the sites.more » « less
An official website of the United States government

