Abstract We classify all essential extensions of the form $$ \begin{align*} &0 \rightarrow {\mathcal{W}} \rightarrow {D} \rightarrow A \rightarrow 0,\end{align*}$$where $${\mathcal {W}}$$ is the unique separable simple C*-algebra with a unique tracial state, which is $KK$-contractible and has finite nuclear dimension, and $$A$$ is a separable amenable $${\mathcal {W}}$$-embeddable C*-algebra, which satisfies the Universal Coefficient Theorem (UCT). We actually prove more general results. We also classify a class of amenable $C^*$-algebras, which have only one proper closed ideal $${\mathcal {W}}.$$
more »
« less
The classification of simple separable KK-contractible C*-algebras with finite nuclear dimension
The class of simple separable KK-contractible (KK-equivalent to \{0\} ) C*-algebra s which have finite nuclear dimension is shown to be classified by the Elliott invariant. In particular, the class of C*-algebras A\otimes K is classifiable, where A is a simple separable C*-algebra with finite nuclear dimension and is the simple inductive limit of Razak algebras with unique trace, which is bounded
more »
« less
- PAR ID:
- 10223794
- Date Published:
- Journal Name:
- Journal of geometry and physics
- Volume:
- 158
- Issue:
- 103861
- ISSN:
- 1879-1662
- Page Range / eLocation ID:
- 1-51
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We present a classification theorem for separable amenable simple stably projectionless C -algebras with finite nuclear dimension whose K0 vanish on traces which satisfy the Universal Coefficient Theorem. One of C -algebras in the class is denoted by Z0 which has a unique tracial state, K_0(Z_0) = Z and K1(Z_0) = {0}. Let A and B be two separable amenable simple C -algebras satisfying the UCT. We show that A ⊗ Z_0 = B ⊗ Z_0 if and only if Ell(A ⊗ Z_0 ) = Ell(B ⊗ Z_0 ). A class of simple separable C -algebras which are approximately sub-homogeneous whose spectra having bounded dimension is shown to exhaust all possible Elliott invariant for C -algebras of the form A ⊗ Z_0 , where A is any finite separable simple amenable C -algebras.more » « less
-
We revisit the notion of tracial approximation for unital simple C*-algebras. We show that a unital simple separable in nite dimensional C*-algebra A is asymptotically tracially in the class of C-algebras with nite nuclear dimension if and only if A is asymptotically tracially in the class of nuclear Z-stable C-algebras. 1more » « less
-
We construct two types of unital separable simple 𝐶∗-algebras: 𝐴𝐶1 𝑧 and 𝐴𝐶2 𝑧 , one exact but not amenable, the other nonexact. Both have the same Elliott invariant as the Jiang–Su algebra – namely, 𝐴𝐶𝑖 𝑧 has a unique tracial state, 𝐾0 𝐴𝐶𝑖 𝑧 , 𝐾0 𝐴𝐶𝑖 𝑧 + , 1 𝐴𝐶𝑖 𝑧 = (Z, Z+, 1), and 𝐾1 𝐴𝐶𝑖 𝑧 = {0} (𝑖 = 1, 2). We show that 𝐴𝐶𝑖 𝑧 (𝑖 = 1, 2) is essentially tracially in the class of separable 𝒵-stable 𝐶∗-algebras of nuclear dimension 1. 𝐴𝐶𝑖 𝑧 has stable rank one, strict comparison for positive elements and no 2-quasitrace other than the unique tracial state. We also produce models of unital separable simple nonexact (exact but not nuclear) 𝐶∗-algebras which are essentially tracially in the class of simple separable nuclear𝒵-stable 𝐶∗-algebras, and the models exhaust all possible weakly unperforated Elliott invariants.We also discuss some basic properties of essential tracial approximation. 1.more » « less
-
Elliott, G.A. (Ed.)A classification theorem is obtained for a class of unital simple separable amenable Z-stable C*-algebras which exhausts all possi- ble values of the Elliott invariant for unital stably finite simple separable amenable Z-stable C*-algebras. Moreover, it contains all unital simple separable amenable C∗-algebras which satisfy the UCT and have finite rational tracial rank.more » « less
An official website of the United States government

