We have not only analyzed the performance of perovskite oxides as support media for the methanol oxidation reaction (MOR) but also examined the impact and significance of various reaction parameters on their synthesis. Specifically, we have generated (a) La 2 NiMnO 6 , LaMnO 3 , and LaNiO 3 nanocubes with average sizes of ∼200 nm, in addition to a series of La 2 NiMnO 6 (b) nanocubes possessing average sizes of ∼70 and 400 nm and (c) anisotropic nanorods characterized by average diameters of 40–50 nm. All of these samples, when used as supports for Pt nanoparticles, exhibited activities which were at least twice that measured for Pt/C. We have investigated and correlated the effect of varying perovskite (i) composition, (ii) size, and (iii) morphology upon the measured MOR activity. (i) The Ni-containing perovskites yielded generally higher performance metrics than LaMnO 3 alone, suggesting that the presence of Ni is favorable for MOR, a finding supported by a shift in the Pt d -band in XPS. (ii) MOR activity is enhanced as the perovskite size increases in magnitude, suggesting that a growth in the perovskite particle size enables favorable, synergistic metal–support interactions. (iii) A comparison of the nanorods and nanocubes of a similar diameter implied that the one-dimensional morphology achieved a greater activity, a finding which can be attributed not only to the anisotropic structure but also to a desirable surface structure. Overall, these data yield key insights into the tuning of metal–support interactions via rational control over the composition, size, and morphology of the underlying catalyst support.
more »
« less
Surfactant-Free Synthesis of Three-Dimensional Perovskite Titania-Based Micron-Scale Motifs Used as Catalytic Supports for the Methanol Oxidation Reaction
We synthesized and subsequently rationalized the formation of a series of 3D hierarchical metal oxide spherical motifs. Specifically, we varied the chemical composition within a family of ATiO3 (wherein “A” = Ca, Sr, and Ba) perovskites, using a two-step, surfactant-free synthesis procedure to generate structures with average diameters of ~3 microns. In terms of demonstrating the practicality of these perovskite materials, we have explored their use as supports for the methanol oxidation reaction (MOR) as a function of their size, morphology, and chemical composition. The MOR activity of our target systems was found to increase with decreasing ionic radius of the “A” site cation, in order of Pt/CaTiO3 (CTO) > Pt/SrTiO3 (STO) > Pt/BaTiO3 (BTO). With respect to morphology, we observed an MOR enhancement of our 3D spherical motifs, as compared with either ultra-small or cubic control samples. Moreover, the Pt/CTO sample yielded not only improved mass and specific activity values but also a greater stability and durability, as compared with both commercial TiO2 nanoparticle standards and precursor TiO2 templates.
more »
« less
- Award ID(s):
- 1807640
- PAR ID:
- 10223800
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 26
- Issue:
- 4
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 909
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Electrocatalytic water splitting presents an exciting opportunity to produce environmentally benign hydrogen fuel to power human activities. Earth abundant Ni5P4 has emerged as an efficient catalyst for the hydrogen evolution reaction (HER) and its activity can be enhanced by admixing synergistic metals to modify the surface affinity and consequently kinetics of HER. Computational studies suggest that the HER activity of Ni5P4 can be improved by Zn doping, causing a chemical pressure-like effect on Ni3 hollow sites. Herein, we report a facile colloidal route to produce Ni5-xZnxP4 nanocrystals (NCs) with control over structure, morphology, and composition and investigate their composition-dependent HER activity in alkaline solutions. Ni5-xZnxP4 NCs retain the hexagonal structure and solid spherical morphology of binary Ni5P4 NCs with a notable size increase from 9.2-28.5 nm for x = 0.00-1.27 compositions. Elemental maps affirm the homogeneous ternary alloy formation with no evidence of Zn segregation. Surface analysis of Ni5-xZnxP4 NCs indicates significant modulation of the surface polarization upon Zn incorporation resulting in a decrease in Niδ+ and an increase in Pδ- charge. Although all compositions followed a Volmer-Heyrovsky HER mechanism, the modulated surface polarization enhances the reaction kinetics producing lower Tafel slopes for Ni5-xZnxP4 NCs (82.5-101.9 mV/dec for x = 0.10-0.84) compared to binary Ni5P4 NCs (109.9 mV/dec). Ni5-xZnxP4 NCs showed higher HER activity with overpotentials of 131.6-193.8 mV for x = 0.02-0.84 in comparison to Ni5P4 NCs (218.1 mV) at a current density of -10 mA/cm2. Alloying with Zn increases the material’s stability with only a ~10% increase in overpotential for Ni4.49Zn0.51P4 NCs at -50 mA/cm2, whereas a ~33% increase was observed for Ni5P4 NCs. At current densities above -40 mA/cm2, bimetallic NCs with x = 0.10, 0.29, and 0.51 compositions outperformed the benchmark Pt/C catalyst, suggesting that hexagonal alloyed Ni5-xZnxP4 NCs are excellent candidates for practical applications that necessitate lower HER overpotentials at higher current densities.more » « less
-
In the context of developing novel fuel cell catalysts, we have successfully synthesized in high yields not only ultrathin nanowires with compositions of Pt1Ru1 and Pt3Ru1 but also more complex spoke-like dendritic clusters of Pt1Ru1 and Pt1Ru9 in ambient pressure under relatively straightforward, solution-based reaction conditions, mediated by either CTAB (cetyltrimethylammonium bromide) or oleylamine (OAm), respectively. EXAFS analysis allowed us to determine the homogeneity of as-prepared samples. Based on this analysis, only the Pt3Ru1 sample was found to be relatively homogeneous. All of the other samples yielded results, suggestive of a tendency for the elements to segregate into clusters of ‘like’ atoms. We have also collected complementary HRTEM EDS mapping data, which support the idea of a segregation of elements consistent with the EXAFS results. We attribute the differences in the observed morphologies and elemental distributions within as-prepared samples to the presence of varying surfactants and heating environments, employed in these reactions. Methanol oxidation reaction (MOR) measurements indicated a correlation of specific activity (SA) values not only with intrinsic chemical composition and degree of alloying but also with the reaction process used to generate the nanoscale motifs in the first place. Specifically, the observed performance of samples tested decreased as a function of chemical composition (surfactant used in their synthesis), as follows: Pt3Ru1 (CTAB) > Pt1Ru1 (CTAB) > Pt1Ru1 (OAm) > Pt1Ru9 (OAm).more » « less
-
Abstract Fabrication of 3dmetal‐based core@shell nanocatalysts with engineered Pt‐surfaces provides an effective approach for improving the catalytic performance. The challenges in such preparation include shape control of the 3dmetallic cores and thickness control of the Pt‐based shells. Herein, we report a colloidal seed‐mediated method to prepare octahedral CuNi@Pt‐Cu core@shell nanocrystals using CuNi octahedral cores as the template. By precisely controlling the synthesis conditions including the deposition rate and diffusion rate of the shell‐formation through tuning the capping ligand, reaction temperature, and heating rate, uniform Pt‐based shells can be achieved with a thickness of <1 nm. The resultant carbon‐supported CuNi@Pt‐Cu core@shell nano‐octahedra showed superior activity in electrochemical methanol oxidation reaction (MOR) compared with the commercial Pt/C catalysts and carbon‐supported CuNi@Pt‐Cu nano‐polyhedron counterparts.more » « less
-
H2 activation is fundamental in catalysis. Single-atom catalysts (SACs) can be highly selective hydrogenation catalysts due to their tunable geometric and electronic properties. In this work, H2 activation (adsorption, splitting, and diffusion) on the anatase TiO2-supported SAC has been modeled in detail. The stable configurations of 14 transition metals from 3d to 5d (Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Cd, Os, Ir, Pt, and Au) and Sn have been screened. We compared H and H2 adsorption and H2 heterolytic and homolytic splitting on SA/TiO2. H on the SAC in neutral, hydridic, and proton forms and the preferred H2 dissociation paths are revealed. We found that the metal adatoms strengthen the Brønsted acids via forming the SA-O bonds and promote the H adsorption on Ti sites via forming the Ti3+ sites. The electronic descriptor using the energy level of the frontier d orbital, referenced to vacuum, can predict the single H and H2 dissociative adsorption energies on the metal site. As the SA-Hδ- interaction is stronger than Ti-Hδ-, the activation barriers for heterolytic paths over SA-O sites are lower than over Ti-O sites. H2 adsorption is activated on Au, Ru, Rh, Pd, and Ir in a dihydrogen complex structure with an elongated H-H bond. Homolytic splitting over SA sites is favored thermodynamically and kinetically on Rh, Pd, Os, Ir, and Pt. In contrast, for the remaining SA/TiO2, H-H splitting at the SA-O is kinetically favored compared to the Ti-O sites, but the products are less thermodynamically favored.more » « less
An official website of the United States government

