Fabrication of 3
Fabrication of 3
- Award ID(s):
- 1808383
- NSF-PAR ID:
- 10236449
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 60
- Issue:
- 14
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 7675-7680
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract d metal‐based core@shell nanocatalysts with engineered Pt‐surfaces provides an effective approach for improving the catalytic performance. The challenges in such preparation include shape control of the 3d metallic cores and thickness control of the Pt‐based shells. Herein, we report a colloidal seed‐mediated method to prepare octahedral CuNi@Pt‐Cu core@shell nanocrystals using CuNi octahedral cores as the template. By precisely controlling the synthesis conditions including the deposition rate and diffusion rate of the shell‐formation through tuning the capping ligand, reaction temperature, and heating rate, uniform Pt‐based shells can be achieved with a thickness of <1 nm. The resultant carbon‐supported CuNi@Pt‐Cu core@shell nano‐octahedra showed superior activity in electrochemical methanol oxidation reaction (MOR) compared with the commercial Pt/C catalysts and carbon‐supported CuNi@Pt‐Cu nano‐polyhedron counterparts. -
Abstract Copper indium sulfide (CIS) colloidal quantum dots (QDs) are a promising candidate for commercially viable QD‐based optical applications, for example as colloidal photocatalysts or in luminescent solar concentrators (LSCs). CIS QDs with good photoluminescence quantum yields (PLQYs) and tunable emission wavelength via size and composition control are previously reported. However, developing an understanding and control over the growth of electronically passivating inorganic shells would enable further improvements of the photophysical properties of CIS QDs. To improve the optical properties of CIS QDs, the focus is on the growth of inorganic shells via the popular metal‐carboxylate/alkane thiol decomposition reaction. 1) The role of Zn‐carboxylate and Zn‐thiolate on the formation of ZnS shells on Cu‐deficient CIS (CDCIS) QDs is studied, 2) this knowledge is leveraged to yield >90% PLQY CDCIS/ZnS core/shell QDs, and 3) a mechanism for ZnS shells grown from zinc‐carboxylate/alkane thiol decomposition is proposed.
-
This study demonstrates an atomic composition manipulation on Pt–Ni nano-octahedra to enhance their electrocatalytic performance. By selectively extracting Ni atoms from the {111} facets of the Pt–Ni nano-octahedra using gaseous carbon monoxide at an elevated temperature, a Pt-rich shell is formed, resulting in an ∼2 atomic layer Pt-skin. The surface-engineered octahedral nanocatalyst exhibits a significant enhancement in both mass activity (∼1.8-fold) and specific activity (∼2.2-fold) toward the oxygen reduction reaction compared with its unmodified counterpart. After 20,000 potential cycles of durability tests, the surface-etched Pt–Ni nano-octahedral sample shows a mass activity of 1.50 A/mgPt, exceeding the initial mass activity of the unetched counterpart (1.40 A/mgPt) and outperforming the benchmark Pt/C (0.18 A/mgPt) by a factor of 8. DFT calculations predict this improvement with the Pt surface layers and support these experimental observations. This surface-engineering protocol provides a promising strategy for developing novel electrocatalysts with improved catalytic features.more » « less
-
Abstract Reconfigurable hybrid nanoparticles made by decorating flexible polymer shells on rigid inorganic nanoparticle cores can provide a unique means to build stimuli‐responsive functional materials. The polymer shell reconfiguration has been expected to depend on the local core shape details, but limited systematic investigations have been undertaken. Here, two literature methods are adapted to coat either thiol‐terminated polystyrene (PS) or polystyrene‐poly(acrylic acid) (PS‐
b ‐PAA) shells onto a series of anisotropic gold nanoparticles of shapes not studied previously, including octahedron, concave cube, and bipyramid. These core shapes are complex, rendering shell contours with nanoscale details (e.g., local surface curvature, shell thickness) that are imaged and analyzed quantitatively using the authors' customized analysis codes. It is found that the hybrid nanoparticles based on the chosen core shapes, when coated with the above two polymer shells, exhibit distinct shell segregations upon a variation in solvent polarity or temperature. It is demonstrated for the PS‐b ‐PAA‐coated hybrid nanoparticles, the shell segregation is maintained even after a further decoration of the shell periphery with gold seeds; these seeds can potentially facilitate subsequent deposition of other nanostructures to enrich structural and functional diversity. These synthesis, imaging, and analysis methods for the hybrid nanoparticles of anisotropically shaped cores can potentially aid in their predictive design for materials reconfigurable from the bottom up. -
Abstract The nanoscale integration of copper metal, frequently with semiconductor heterostructure interfaces, is a promising route for fabricating new micro‐/nanoelectronic devices. Synthesizing such systems using wet‐chemistry methods requires stabilization of nano‐Cu against corrosion/oxidation, which has proven to be challenging. Here we report a methodology for the facile preparation of Cu@TiO2core‐shell nanowires (NWs). The synthesis combines redox formation of Cu NWs with kinetically controlled hydrolysis of a titania precursor in a single‐pot microwave reaction. The final core‐shell NWs can be precisely tailored with 20‐nm to 140‐nm Cu core diameters, aspect ratios >250, and a 10‐nm porous titania shell. This metal/semiconductor heterojunction is particularly important for its excellent photocatalytic activity. The rapid microwave‐assisted synthesis provides a potentially generalizable paradigm for the rational design of heterogeneous nanostructures with metals and oxides.