skip to main content


Title: Real-time HEP analysis with funcX, a high-performance platform for function as a service
We explore how the function as a service paradigm can be used to address the computing challenges in experimental high-energy physics at CERN. As a case study, we use funcX—a high-performance function as a service platform that enables intuitive, flexible, efficient, and scalable remote function execution on existing infrastructure—to parallelize an analysis operating on columnar data to aggregate histograms of analysis products of interest in real-time. We demonstrate efficient execution of such analyses on heterogeneous resources.  more » « less
Award ID(s):
2004894 2004932
NSF-PAR ID:
10223812
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Editor(s):
Doglioni, C.; Kim, D.; Stewart, G.A.; Silvestris, L.; Jackson, P.; Kamleh, W.
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
245
ISSN:
2100-014X
Page Range / eLocation ID:
07046
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biscarat, C. ; Campana, S. ; Hegner, B. ; Roiser, S. ; Rovelli, C.I. ; Stewart, G.A. (Ed.)
    In High Energy Physics facilities that provide High Performance Computing environments provide an opportunity to efficiently perform the statistical inference required for analysis of data from the Large Hadron Collider, but can pose problems with orchestration and efficient scheduling. The compute architectures at these facilities do not easily support the Python compute model, and the configuration scheduling of batch jobs for physics often requires expertise in multiple job scheduling services. The combination of the pure-Python libraries pyhf and funcX reduces the common problem in HEP analyses of performing statistical inference with binned models, that would traditionally take multiple hours and bespoke scheduling, to an on-demand (fitting) “function as a service” that can scalably execute across workers in just a few minutes, offering reduced time to insight and inference. We demonstrate execution of a scalable workflow using funcX to simultaneously fit 125 signal hypotheses from a published ATLAS search for new physics using pyhf with a wall time of under 3 minutes. We additionally show performance comparisons for other physics analyses with openly published probability models and argue for a blueprint of fitting as a service systems at HPC centers. 
    more » « less
  2. One of the most significant challenges in the field of software code auditing is the presence of vulnerabilities in software source code. Every year, more and more software flaws are discovered, either internally in proprietary code or publicly disclosed. These flaws are highly likely to be exploited and can lead to system compromise, data leakage, or denial of service. To create a large-scale machine learning system for function-level vulnerability identification, we utilized a sizable dataset of C and C++ open-source code containing millions of functions with potential buffer overflow exploits. We have developed an efficient and scalable vulnerability detection method based on neural network models that learn features extracted from the source codes. The source code is first converted into an intermediate representation to remove unnecessary components and shorten dependencies. We maintain the semantic and syntactic information using state-ofthe- art word embedding algorithms such as GloVe and fastText. The embedded vectors are subsequently fed into neural networks such as LSTM, BiLSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we have proposed a neural network model that can overcome issues associated with traditional neural networks. We have used evaluation metrics such as F1 score, precision, recall, accuracy, and total execution time to measure the performance. We have conducted a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We have found that all neural network models provide higher accuracy when we use semantic and syntactic information as features. However, this approach requires more execution time due to the added complexity of the word embedding algorithm. Moreover, our proposed model provides higher accuracy than LSTM, BiLSTM, LSTM-Autoencoder, word2vec and BERT models, and the same accuracy as the GPT-2 model with greater efficiency. 
    more » « less
  3. The growing popularity of Machine Learning (ML) has led to its deployment in various sensitive domains, which has resulted in significant research focused on ML security and privacy. However, in some applications, such as Augmented/Virtual Reality, integrity verification of the outsourced ML tasks is more critical–a face that has not received much attention. Existing solutions, such as multi-party computation and proof-based systems, impose significant computation overhead, which makes them unfit for real-time applications. We propose Fides, a novel framework for real-time integrity validation of ML-as-a-Service (MLaaS) inference. Fides features a novel and efficient distillation technique–Greedy Distillation Transfer Learning–that dynamically distills and fine-tunes a space and compute-efficient verification model for verifying the corresponding service model while running inside a trusted execution environment. Fides features a client-side attack detection model that uses statistical analysis and divergence measurements to identify, with a high likelihood, if the service model is under attack. Fides also offers a re-classification functionality that predicts the original class whenever an attack is identified. We devised a generative adversarial network framework for training the attack detection and re-classification models. The evaluation shows that Fides achieves an accuracy of up to 98% for attack detection and 94% for re-classification. 
    more » « less
  4. Interactive web-based applications play an important role for both service providers and consumers. However, web applications tend to be complex, produce high-volume data, and are often ripe for attack. Attack analysis and remediation are complicated by adversary obfuscation and the difficulty in assembling and analyzing logs. In this work, we explore the web application analysis task through log file fusion, distillation, and visualization. Our approach consists of visualizing the logs of web and database traffic with detailed function execution traces. We establish causal links between events and their associated behaviors. We evaluate the effectiveness of this process using data volume reduction statistics, user interaction models, and usage scenarios. Across a set of scenarios, we find that our techniques can filter at least 97.5% of log data and reduce analysis time by 93-96%. 
    more » « less
  5. Service function chaining (SFC), consisting of a sequence of virtual network functions (VNFs) (i.e., firewalls and load balancers), is an effective service provision technique in modern data center networks. By requiring cloud user traffic to traverse the VNFs in order, SFC im- proves the security and performance of the cloud user applications. In this paper, we study how to place an SFC inside a data center to mini- mize the network traffic of the virtual machine (VM) communication. We take a cooperative multi-agent reinforcement learning approach, wherein multiple agents collaboratively figure out the traffic-efficient route for the VM communication. Underlying the SFC placement is a fundamental graph-theoretical prob- lem called the k-stroll problem. Given a weighted graph G(V, E), two nodes s, t ∈ V , and an integer k, the k-stroll problem is to find the shortest path from s to t that visits at least k other nodes in the graph. Our work is the first to take a multi-agent learning approach to solve k- stroll problem. We compare our learning algorithm with an optimal and exhaustive algorithm and an existing dynamic programming(DP)-based heuristic algorithm. We show that our learning algorithm, although lack- ing the complete knowledge of the network assumed by existing research, delivers comparable or even better VM communication time while taking two orders of magnitude of less execution time. 
    more » « less