skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Teaching and Learning Science through Multiple Representations: Intuitions and Executive Functions
Reasoning about visual representations in science requires the ability to control one’s attention, inhibit attention to irrelevant or incorrect information, and hold information in mind while manipulating it actively—all aspects of the limited-capacity cognitive system described as humans’ executive functions. This article describes pedagogical intuitions on best practices for how to sequence visual representations among pre-service teachers, adult undergraduates, and middle school children, with learning also tested in the middle school sample. Interestingly, at all ages, most people reported beliefs about teaching others that were different from beliefs about how they would learn. Teaching beliefs were most often that others would learn better from presenting representations one at a time, serially; while learning beliefs were that they themselves would learn best from simultaneous presentations. Students did learn best from simultaneously presented representations of mitosis and meiosis, but only when paired with self-explanation prompts to discuss the relationships between the graphics. These results provide new recommendations for helping students draw connections across visual representations, particularly mitosis and meiosis, and suggest that science educators would benefit from shifting their teaching beliefs to align with beliefs about their own learning from multiple visual representations.  more » « less
Award ID(s):
2027447
PAR ID:
10223864
Author(s) / Creator(s):
;
Editor(s):
Davidesco, Ido
Date Published:
Journal Name:
CBE—Life Sciences Education
Volume:
19
Issue:
4
ISSN:
1931-7913
Page Range / eLocation ID:
ar61
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graphical representations are ubiquitous in the learning and teaching of science, technology, engineering, and mathematics (STEM). However, these materials are often not accessible to the over 547,000 students in the United States with blindness and significant visual impairment, creating barriers to pursuing STEM educational and career pathways. Furthermore, even when such materials are made available to visually impaired students, access is likely through literalized modes (e.g., braille, verbal description), which is problematic as these approaches (1) do not directly convey spatial information and (2) are different from the graphic-based materials used by students without visual impairment. The purpose of this study was to design and evaluate a universally accessible system for communicating graphical representations in STEM classes. By combining a multisensory vibro-audio interface and an app running on consumer mobile hardware, the system is meant to work equally well for all students, irrespective of their visual status. We report the design of the experimental system and the results of an experiment where we compared learning performance with the system to traditional (visual or tactile) diagrams for sighted participants (n = 20) and visually impaired participants (n =9) respectively. While the experimental multimodal diagrammatic system (MDS) did result in significant learning gains for both groups of participants, the results also revealed no statistically significant differences in the capacity for learning from graphical information across both comparison groups. Likewise, there were no statistically significant differences in the capacity for learning from graphical information between the stimuli presented through the experimental system and the traditional (visual or tactile) diagram control conditions, across either participant group. These findings suggest that both groups were able to learn graphical information from the experimental system as well as traditional diagram presentation materials. This learning modality was supported without the need for conversion of the diagrams to make them accessible for participants who required tactile materials. The system also provided additional multisensory information for sighted participants to interpret and answer questions about the diagrams. Findings are interpreted in terms of new universal design principles for producing multisensory graphical representations that would be accessible to all learners. 
    more » « less
  2. Computational thinking is identified as one of the “essential skills for 21st-Century students.” [1] Studies of CT in school programs are being funded by many organizations, including the United States National Science Foundation. In this paper, we describe “lessons learned” over the first two years of a research program (PREDICTS: Principles and Resources for Educators to Infuse Computational Thinking in the Sciences) with the goal of developing knowledge of how to integrate CT into introductory high school biology and chemistry classes for all students. Using curricular modules developed by program staff, two in biology and two in chemistry, teachers piloting the program engaged students in CT with computational evidence from authentic tools in order to develop understanding of science concepts. Each module, representing about a week of instruction, addresses science ideas in the prescribed course of study for high school programs. Project researchers have collected survey data on teachers’: (1) beliefs about effective science teaching; (2) beliefs about their effectiveness as a science teacher and their students’ ability to learn science, and; (3) content preparedness. In addition, we observed module implementation, collected and analyzed student artifacts, and interviewed teachers at the conclusion of module implementation. Preliminary results indicated some challenges (access to technology, varying levels of experience among students) and cause for optimism (student and teacher engagement in CT and the computational tools used in the modules). Continuing research efforts are described in this paper, along with descriptions of the curricular modules and the use of observations and “CT check-ins” to assess student engagement in, application of, and learning of CT. 
    more » « less
  3. Cyber bullying, digital identity, impact of digital footprints, and use of inappropriate social media are topics that are gaining attention in K-12 schools. As more schools and school districts are implementing 1-1 and “bring your own technology” initiatives, attention to these topics is becoming increasingly important. A total of 593 middle school students were surveyed about digital footprints and concerns about social media. The results show that 17% started using social media at age nine or younger, 40% accepted friend requests from people they do not know, and 40% reported that their parents did not monitor their social media use, which calls for the needs of cyber-security education. These middle school students reported using social media most often to connect with their friends, share pictures, and find out what others are doing. They indicated that Instagram (27%), SnapChat (25%) and YouTube (25%) were their most used social media sites. These students have concerns about social media due to inappropriate postings, getting hacked, getting their feelings hurt, lack of privacy, inappropriate pictures, bullying, negativity, and stalkers. This study informs teachers, administrators, technology facilitators and parents on social media use by students. 
    more » « less
  4. This project, titled Collective Argumentation Learning and Coding (CALC), is based on our belief that if teachers had an instructional approach that allowed them to teach coding alongside mathematics and science in integrated ways, then coding would become a mainstream subject taught in the elementary school curriculum. However, few practicing elementary school teachers have the academic backgrounds that allow them to teach coding in a manner that goes beyond allowing students to learn how to code through trial-and-error experimentation and as an additive learning activity such as an after-school program. Current content and practice standards call for the use of argumentation in the teaching of mathematics and science. This project is focused on extending the collective argumentation framework for the teaching of mathematics to the teaching of coding. Teachers at our partnering school district have completed the first design of a prototype CALC course where they used collective argumentation to learn how to code educational robotics. At the end of this course, the teachers developed lesson plans that were implemented in grades 3, 4 and 5.This paper and conference presentation focused on the research question, how do elementary school teachers use the CALC approach to support their students’ learning of coding, mathematics, and science content and practices? Overall, the implementation of the CALC approach demonstrated the growth of the teachers in their ability to teach coding as a reasoning process and as a means to integrate it into everyday classroom activities. 
    more » « less
  5. Gresalfi, M.; Horn, I. (Ed.)
    The design of most learning environments focuses on supporting students in making, constructing, and putting together projects on and off the screen, with much less attention paid to the many issues—problems, bugs, or traps—that students invariably encounter along the way. In this symposium, we present different theoretical and disciplinary perspectives on understanding how learners engage in debugging applications on and off screen, examine learners’ mindsets about debugging from middle school to college students and teachers, and present pedagogical approaches that promote strategies for debugging problems, even having learners themselves design problems for others. We contend that learning to identify and fix problems—debug, troubleshoot, or get unstuck—in completing projects provides a productive space in which to explore multiple theoretical perspectives that can contribute to our understanding of learning and teaching critical strategies for dealing with challenges in learning activities and environments. 
    more » « less