skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Catalyst-Controlled Regioselectivity in Pd-Catalyzed Aerobic Oxidative Arylation of Indoles
Pd-catalyzed C–H arylation of heteorarenes is an important and widely studied synthetic transformation; however, the regioselectivity is often substrate-controlled. Here, we report catalyst-controlled regioselectivity in the Pd-catalyzed oxidative coupling of N-(phenylsulfonyl)indoles and aryl boronic acids using O2 as the oxidant. Both C2- and C3-arylated indoles are obtained in good yield with >10:1 selectivity. A switch from C2 to C3 regioselectivity is achieved by including 4,5-diazafluoren-9-one or 2,2'-bipyrimidine as an ancillary ligand to a "ligand-free" Pd(OTs)2 catalyst system. Density functional theory calculations indicate that the switch in selectivity arises from a change in the mechanism, from a C2-selective oxidative-Heck pathway to a C3-selective C–H activation/reductive elimination pathway.  more » « less
Award ID(s):
1665120 1953926
PAR ID:
10223867
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Organometallics
ISSN:
0276-7333
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Indole is one of the most important heterocycles in organic synthesis, natural products, and drug discovery. Recently, tremendous advances in the selective functionalization of indoles have been reported. Although the most important advances have been powered by transition metal catalysis, exceedingly useful methods in the absence of transition metals have also been reported. In this review, we provide an overview of functionalization reactions of indoles that have been published in the last years with a focus on the most recent advances, aims, and future trends. The review is organized by the positional selectivity and type of methods used for functionalization. In particular, we discuss major advances in transition‐metal‐catalyzed C−H functionalization at the classical C2/C3 positions, transition‐metal‐catalyzed C−H functionalization at the remote C4/C7 positions, transition‐metal‐catalyzed cross‐coupling, and transition‐metal‐free functionalization. magnified image 
    more » « less
  2. Abstract Methods that can simultaneously install multiple different functional groups to heteroarenes via C−H functionalizations are valuable for complex molecule synthesis, which, however, remain challenging to realize. Here we report the development of vicinal di‐carbo‐functionalization of indoles in a site‐ and regioselective manner, enabled by the palladium/norbornene (Pd/NBE) cooperative catalysis. The reaction is initiated by the Pd(II)‐mediated C3‐metalation and specifically promoted by the C1‐substituted NBEs. The mild, scalable, and robust reaction conditions allow for a good substrate scope and excellent functional group tolerance. The resulting C2‐arylated C3‐alkenylated indoles can be converted to diverse synthetically useful scaffolds. The combined experimental and computational mechanistic study reveals the unique role of the C1‐substituted NBE in accelerating the turnover‐limiting oxidative addition step. 
    more » « less
  3. Abstract Transition metal‐catalyzed C−H bond oxidation of free carboxylic acid stands as an economic, selective, and efficient strategy to generate lactones, hydroxylated products, and acetoxylated products and attracts much of the chemists’ attention. Herein, we performed a density functional theory study on the mechanism and selectivity in Pd‐catalyzed and MPAA ligand‐enabled C−H bond acetoxylation reaction. It was found that the ligand, base, and substrate are important in determining the reaction mechanism and the selectivity. The acetic anhydride additive is critical in leading the reaction to be acetoxylation, instead of the lactonization, through a facile σ‐bond metathesis mechanism that leads to the Pd‐OAc in‐termediate. Our study sheds light on the further development of transition metal‐catalyzed C−H bond oxidation reactions. 
    more » « less
  4. Abstract Ligand‐controlled regiodivergence has been developed for catalytic semireduction of allenamides with excellent chemo‐ and stereocontrol. This system also provides an example of catalytic regiodivergent semireduction of allenes for the first time. The divergence of the semireduction is enabled by ligand switch with the same palladium pre‐catalyst under operationally simple and mild conditions. Monodentate ligand XPhos exclusively promotes selective 1,2‐semireduction to afford allylic amides, while bidentate ligand BINAP completely switched the regioselectivity to 2,3‐semireduction, producing (E)‐enamide derivatives. 
    more » « less
  5. null (Ed.)
    Palladium(II)-catalyzed C–H oxidation reactions could streamline the synthesis of pharmaceuticals, agrochemicals, and other complex organic molecules. Existing methods, however, commonly exhibit poor catalyst performance with high Pd loading (e.g., 10 mol %) and a need for (super)stoichiometric quantities of undesirable oxidants, such as benzoquinone and silver(I) salts. The present study probes the mechanism of a representative Pd-catalyzed oxidative C–H arylation reaction and elucidates mechanistic features that undermine catalyst performance, including substrate-consuming side reactions and sequestration of the catalyst as inactive species. Systematic tuning of the quinone co-catalyst overcomes these deleterious features. Use of 2,5-di- tert -butyl- p -benzoquinone enables efficient use of molecular oxygen as the oxidant, high reaction yields, and >1900 turnovers by the palladium catalyst. 
    more » « less