skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Carbon dots for effective photodynamic inactivation of virus
The antiviral function of carbon dots (CDots) with visible light exposure was evaluated, for which the model bacteriophages MS2 as a surrogate of small RNA viruses were used. The results show clearly that the visible light-activated CDots are highly effective in diminishing the infectivity of MS2 in both low and high titer samples to the host E. coli cells, and the antiviral effects are dot concentration- and treatment time-dependent. The action of CDots apparently causes no significant damage to the structural integrity and morphology of the MS2 phage or the breakdown of the capsid proteins, but does result in the protein carbonylation (a commonly used indicator for protein oxidation) and the degradation of viral genomic RNA. Mechanistically the results may be understood in the framework of photodynamic effects that are associated with the unique excited state properties and processes of CDots. Opportunities for potentially broad applications of CDots coupled with visible/natural light in the prevention and control of viral transmission and spread are highlighted and discussed.  more » « less
Award ID(s):
1855905 1701399 1701424 1829245
PAR ID:
10223897
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
RSC Advances
Volume:
10
Issue:
56
ISSN:
2046-2069
Page Range / eLocation ID:
33944 to 33954
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the mechanisms by which single-stranded RNA viruses regulate capsid assembly around their RNA genomes has become increasingly important for the development of both antiviral treatments and drug delivery systems. In this study, we investigate the effects of RNA-induced allostery in a single-stranded RNA virus—Levivirus bacteriophage MS2 assembly—using the computational methods of the Dynamic Flexibility Index and the Dynamic Coupling Index. We demonstrate that not only does asymmetric binding of RNA to a symmetric MS2 coat protein dimer increase the flexibility of the distant FG-loop, inducing a conformational change to an asymmetric dimer, but also RNA binding reorganizes long-distance communications, making all the other positions extremely sensitive to the fluctuation of the ordered FG-loop. Additionally, we find that a point mutation in the FG-loop, W82R, leads to the loss of this asymmetry in communications, likely being a leading cause for assembly-deficient dimers. Lastly, this dominant communication that enhances its dynamic coupling with all the distal positions is not only a property of the dimer but is also exhibited by all the observed capsid intermediates. This strong dynamic coupling allows for unidirectional signal transduction that drives the formation of the experimentally observed capsid intermediates and fully assembled capsid. 
    more » « less
  2. We report the asymmetric reconstruction of the single-stranded RNA (ssRNA) content in one of the three otherwise identical virions of a multipartite RNA virus, brome mosaic virus (BMV). We exploit a sample consisting exclusively of particles with the same RNA content—specifically, RNAs 3 and 4—assembled in planta by agrobacterium-mediated transient expression. We find that the interior of the particle is nearly empty, with most of the RNA genome situated at the capsid shell. However, this density is disordered in the sense that the RNA is not associated with any particular structure but rather, with an ensemble of secondary/tertiary structures that interact with the capsid protein. Our results illustrate a fundamental difference between the ssRNA organization in the multipartite BMV viral capsid and the monopartite bacteriophages MS2 and Qβ for which a dominant RNA conformation is found inside the assembled viral capsids, with RNA density conserved even at the center of the particle. This can be understood in the context of the differing demands on their respective lifecycles: BMV must package separately each of several different RNA molecules and has been shown to replicate and package them in isolated, membrane-bound, cytoplasmic complexes, whereas the bacteriophages exploit sequence-specific “packaging signals” throughout the viral RNA to package their monopartite genomes. 
    more » « less
  3. Some RNA viruses package their genomes with extraordinary selectivity, assembling protein capsids around their own viral RNA while excluding nearly all host RNA. How the assembling proteins distinguish viral RNA from host RNA is not fully understood, but RNA structure is thought to play a key role. To test this idea, we perform in-cellulo packaging experiments using bacteriophage MS2 coat proteins and a variety of RNA molecules inEscherichia coli. In each experiment, plasmid-derived RNA molecules with a specified sequence compete against the cellular transcriptome for packaging by plasmid-derived coat proteins. Following this competition, we quantify the total amount and relative composition of the packaged RNA using electron microscopy, interferometric scattering microscopy, and high-throughput sequencing. By systematically varying the input RNA sequence and measuring changes in packaging outcomes, we are able to directly test competing models of selective packaging. Our results rule out a longstanding model in which selective packaging requires the well-known translational repressor (TR) stem-loop, and instead support more recent models in which selectivity emerges from the collective interactions of multiple coat proteins and multiple stem-loops distributed across the RNA molecule. These findings establish a framework for studying and understanding selective packaging in a range of natural viruses and virus-like particles, and lay the groundwork for engineering synthetic systems that package specific RNA cargoes. 
    more » « less
  4. Efficient methods for conjugating proteins to RNA are needed for RNA delivery, imaging, editing, interactome mapping, and barcoding applications. Noncovalent coupling strategies using viral RNA binding proteins such as MS2/MCP have been widely applied but are limited by tag size, sensitivity, and dissociation over time. We took inspiration from a sequence-specific, covalent protein–DNA conjugation method based on the Rep nickase of a porcine circovirus called “HUH tag”. Though wild-type HUH protein has no detectable activity toward an RNA probe, we engineered an RNA-reactive variant, called “rHUH”, through 7 generations of yeast display–based directed evolution. Our 13.4 kD rHUH has 12 mutations relative to HUH and forms a covalent tyrosine-phosphate ester linkage with a 10-nucleotide RNA recognition sequence (“rRS”) within minutes. We engineered the sensitivity down to 1 nM of target RNA, shifted the metal ion requirement from Mn2+toward Mg2+, and demonstrated efficient labeling in mammalian cell lysate. This work paves the way toward a potentially powerful methodology for sequence-specific covalent protein–RNA conjugation in biological systems. 
    more » « less
  5. Structures in the 5′ untranslated regions (UTRs) of mRNAs can physically modulate translation efficiency by impeding the scanning ribosome or by sequestering the translational start site. We assessed the impact of stable protein binding in 5′- and 3′-UTRs on translation efficiency by targeting the MS2 coat protein to a reporter RNA via its hairpin recognition site. Translation was assessed from the reporter RNA when coexpressed with MS2 coat proteins of varying affinities for the RNA, and at different expression levels. Binding of high-affinity proteins in the 5′-UTR hindered translation, whereas no effect was observed when the coat protein was targeted to the 3′-UTR. Inhibition of translation increased with coat protein concentration and affinity, reaching a maximum of 50%–70%. MS2 proteins engineered to bind two reporter mRNA sites had a stronger effect than those binding a single site. Our findings demonstrate that protein binding in an mRNA 5′-UTR physically impedes translation, with the effect governed by affinity, concentration, and sterics. 
    more » « less