skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Carbon dots for effective photodynamic inactivation of virus
The antiviral function of carbon dots (CDots) with visible light exposure was evaluated, for which the model bacteriophages MS2 as a surrogate of small RNA viruses were used. The results show clearly that the visible light-activated CDots are highly effective in diminishing the infectivity of MS2 in both low and high titer samples to the host E. coli cells, and the antiviral effects are dot concentration- and treatment time-dependent. The action of CDots apparently causes no significant damage to the structural integrity and morphology of the MS2 phage or the breakdown of the capsid proteins, but does result in the protein carbonylation (a commonly used indicator for protein oxidation) and the degradation of viral genomic RNA. Mechanistically the results may be understood in the framework of photodynamic effects that are associated with the unique excited state properties and processes of CDots. Opportunities for potentially broad applications of CDots coupled with visible/natural light in the prevention and control of viral transmission and spread are highlighted and discussed.  more » « less
Award ID(s):
1855905 1701399 1701424 1829245
PAR ID:
10223897
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
RSC Advances
Volume:
10
Issue:
56
ISSN:
2046-2069
Page Range / eLocation ID:
33944 to 33954
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the mechanisms by which single-stranded RNA viruses regulate capsid assembly around their RNA genomes has become increasingly important for the development of both antiviral treatments and drug delivery systems. In this study, we investigate the effects of RNA-induced allostery in a single-stranded RNA virus—Levivirus bacteriophage MS2 assembly—using the computational methods of the Dynamic Flexibility Index and the Dynamic Coupling Index. We demonstrate that not only does asymmetric binding of RNA to a symmetric MS2 coat protein dimer increase the flexibility of the distant FG-loop, inducing a conformational change to an asymmetric dimer, but also RNA binding reorganizes long-distance communications, making all the other positions extremely sensitive to the fluctuation of the ordered FG-loop. Additionally, we find that a point mutation in the FG-loop, W82R, leads to the loss of this asymmetry in communications, likely being a leading cause for assembly-deficient dimers. Lastly, this dominant communication that enhances its dynamic coupling with all the distal positions is not only a property of the dimer but is also exhibited by all the observed capsid intermediates. This strong dynamic coupling allows for unidirectional signal transduction that drives the formation of the experimentally observed capsid intermediates and fully assembled capsid. 
    more » « less
  2. We report the asymmetric reconstruction of the single-stranded RNA (ssRNA) content in one of the three otherwise identical virions of a multipartite RNA virus, brome mosaic virus (BMV). We exploit a sample consisting exclusively of particles with the same RNA content—specifically, RNAs 3 and 4—assembled in planta by agrobacterium-mediated transient expression. We find that the interior of the particle is nearly empty, with most of the RNA genome situated at the capsid shell. However, this density is disordered in the sense that the RNA is not associated with any particular structure but rather, with an ensemble of secondary/tertiary structures that interact with the capsid protein. Our results illustrate a fundamental difference between the ssRNA organization in the multipartite BMV viral capsid and the monopartite bacteriophages MS2 and Qβ for which a dominant RNA conformation is found inside the assembled viral capsids, with RNA density conserved even at the center of the particle. This can be understood in the context of the differing demands on their respective lifecycles: BMV must package separately each of several different RNA molecules and has been shown to replicate and package them in isolated, membrane-bound, cytoplasmic complexes, whereas the bacteriophages exploit sequence-specific “packaging signals” throughout the viral RNA to package their monopartite genomes. 
    more » « less
  3. Self-assembly is widely used by biological systems to build functional nanostructures, such as the protein capsids of RNA viruses. But because assembly is a collective phenomenon involving many weakly interacting subunits and a broad range of timescales, measurements of the assembly pathways have been elusive. We use interferometric scattering microscopy to measure the assembly kinetics of individual MS2 bacteriophage capsids around MS2 RNA. By recording how many coat proteins bind to each of many individual RNA strands, we find that assembly proceeds by nucleation followed by monotonic growth. Our measurements reveal the assembly pathways in quantitative detail and also show their failure modes. We use these results to critically examine models of the assembly process. 
    more » « less
  4. Understanding the pathways by which simple RNA viruses self-assemble from their coat proteins and RNA is of practical and fundamental interest. Although RNA–protein interactions are thought to play a critical role in the assembly, our understanding of their effects is limited because the assembly process is difficult to observe directly. We address this problem by using interferometric scattering microscopy, a sensitive optical technique with high dynamic range, to follow the in vitro assembly kinetics of more than 500 individual particles of brome mosaic virus (BMV)—for which RNA–protein interactions can be controlled by varying the ionic strength of the buffer. We find that when RNA–protein interactions are weak, BMV assembles by a nucleation-and-growth pathway in which a small cluster of RNA-bound proteins must exceed a critical size before additional proteins can bind. As the strength of RNA–protein interactions increases, the nucleation time becomes shorter and more narrowly distributed, but the time to grow a capsid after nucleation is largely unaffected. These results suggest that the nucleation rate is controlled by RNA–protein interactions, while the growth process is driven less by RNA–protein interactions and more by protein–protein interactions and intraprotein forces. The nucleated pathway observed with the plant virus BMV is strikingly similar to that previously observed with bacteriophage MS2, a phylogenetically distinct virus with a different host kingdom. These results raise the possibility that nucleated assembly pathways might be common to other RNA viruses. 
    more » « less
  5. Björkroth, Johanna (Ed.)
    ABSTRACT Foodborne pathogens have long been recognized as major challenges for the food industry and repeatedly implicated in food product recalls and outbreaks of foodborne diseases. This study demonstrated the application of a recently discovered class of visible-light-activated carbon-based nanoparticles, namely, carbon dots (CDots), for photodynamic inactivation of foodborne pathogens. The results demonstrated that CDots were highly effective in the photoinactivation of Listeria monocytogenes in suspensions and on stainless steel surfaces. However, it was much less effective for Salmonella cells, but treatments with higher CDot concentrations and longer times were still able to inactivate Salmonella cells. The mechanistic implications of the observed different antibacterial effects on the two types of cells were assessed, and the associated generation of intracellular reactive oxygen species (ROS), the resulting lipid peroxidation, and the leakage of nucleic acid and proteins from the treated cells were analyzed, with the results collectively suggesting CDots as a class of promising photodynamic inactivation agents for foodborne pathogens. IMPORTANCE Foodborne infectious diseases have long been recognized as major challenges in public health. Contaminations of food processing facilities and equipment with foodborne pathogens occur often. There is a critical need for new tools/approaches to control the pathogens and prevent such contaminations in food processing facilities and other settings. This study reports a newly established antimicrobial nanomaterials platform, CDots coupled with visible/natural light, for effective and efficient inactivation of representative foodborne bacterial pathogens. The study will contribute to promoting the practical application of CDots as a new class of promising nanomaterial-based photodynamic inactivation agents for foodborne pathogens. 
    more » « less