skip to main content

Title: Host phylogeny and host ecology structure the mammalian gut microbiota at different taxonomic scales

The gut microbiota is critical for host function. Among mammals, host phylogenetic relatedness and diet are strong drivers of gut microbiota structure, but one factor may be more influential than the other. Here, we used 16S rRNA gene sequencing to determine the relative contributions of host phylogeny and host diet in structuring the gut microbiotas of 11 herbivore species from 5 families living sympatrically in southwest Kenya. Herbivore species were classified as grazers, browsers, or mixed-feeders and dietary data (% C4 grasses in diet) were compiled from previously published sources. We found that herbivore gut microbiotas were highly species-specific, and that host taxonomy accounted for more variation in the gut microbiota (30%) than did host dietary guild (10%) or sample month (8%). Overall, similarity in the gut microbiota increased with host phylogenetic relatedness (r = 0.74) across the 11 species of herbivores, but among 7 closely related Bovid species, dietary %C4 grass values more strongly predicted gut microbiota structure (r = 0.64). Additionally, within bovids, host dietary guild explained more of the variation in the gut microbiota (17%) than did host species (12%). Lastly, while we found that the gut microbiotas of herbivores residing in southwest Kenya converge with those of distinct populations of conspecifics more » from central Kenya, fine-scale differences in the abundances of bacterial amplicon sequence variants (ASVs) between individuals from the two regions were also observed. Overall, our findings suggest that host phylogeny and taxonomy strongly structure the gut microbiota across broad host taxonomic scales, but these gut microbiotas can be further modified by host ecology (i.e., diet, geography), especially among closely related host species.

« less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Animal Microbiome
Springer Science + Business Media
Sponsoring Org:
National Science Foundation
More Like this
  1. The microbiome is critical for host survival and fitness, but gaps remain in our understanding of how this symbiotic community is structured. Despite evidence that related hosts often harbor similar bacterial communities, it is unclear whether this pattern is due to genetic similarities between hosts or to common ecological selection pressures. Here, using herbivorous rodents in the genusNeotoma, we quantify how geography, diet, and host genetics, alongside neutral processes, influence microbiome structure and stability under natural and captive conditions. Using bacterial and plant metabarcoding, we first characterized dietary and microbiome compositions for animals from 25 populations, representing seven species from 19 sites across the southwestern United States. We then brought wild animals into captivity, reducing the influence of environmental variation. In nature, geography, diet, and phylogeny collectively explained ∼50% of observed microbiome variation. Diet and microbiome diversity were correlated, with different toxin-enriched diets selecting for distinct microbial symbionts. Although diet and geography influenced natural microbiome structure, the effects of host phylogeny were stronger for both wild and captive animals. In captivity, gut microbiomes were altered; however, responses were species specific, indicating again that host genetic background is the most significant predictor of microbiome composition and stability. In captivity, diet effectsmore »declined and the effects of host genetic similarity increased. By bridging a critical divide between studies in wild and captive animals, this work underscores the extent to which genetics shape microbiome structure and stability in closely related hosts.

    « less
  2. A major challenge in biology is to understand how phylogeny, diet, and environment shape the mammalian gut microbiome. Yet most studies of nonhuman microbiomes have relied on relatively coarse dietary categorizations and have focused either on individual wild populations or on captive animals that are sheltered from environmental pressures, which may obscure the effects of dietary and environmental variation on microbiome composition in diverse natural communities. We analyzed plant and bacterial DNA in fecal samples from an assemblage of 33 sympatric large-herbivore species (27 native, 6 domesticated) in a semiarid East African savanna, which enabled high-resolution assessment of seasonal variation in both diet and microbiome composition. Phylogenetic relatedness strongly predicted microbiome composition ( r = 0.91) and was weakly but significantly correlated with diet composition ( r = 0.20). Dietary diversity did not significantly predict microbiome diversity across species or within any species except kudu; however, diet composition was significantly correlated with microbiome composition both across and within most species. We found a spectrum of seasonal sensitivity at the diet−microbiome nexus: Seasonal changes in diet composition explained 25% of seasonal variation in microbiome composition across species. Species’ positions on (and deviations from) this spectrum were not obviously driven by phylogeny,more »body size, digestive strategy, or diet composition; however, domesticated species tended to exhibit greater diet−microbiome turnover than wildlife. Our results reveal marked differences in the influence of environment on the degree of diet−microbiome covariation in free-ranging African megafauna, and this variation is not well explained by canonical predictors of nutritional ecology.« less
  3. Drake, Harold L. (Ed.)
    ABSTRACT Beneficial gut microbes can facilitate insect growth on diverse diets. The omnivorous American cockroach, Periplaneta americana (Insecta: Blattodea), thrives on a diet rich in plant polysaccharides and harbors a species-rich gut microbiota responsive to host diet. Bacteroidetes are among the most abundant taxa in P. americana and other cockroaches, based on cultivation-independent gut community profiling, and these potentially polysaccharolytic bacteria may contribute to host diet processing. Eleven Bacteroidetes isolates were cultivated from P. americana digestive tracts, and phylogenomic analyses suggest that they were new Bacteroides , Dysgonomonas , Paludibacter , and Parabacteroides species distinct from those previously isolated from other insects, humans, and environmental sources. In addition, complete genomes were generated for each isolate, and polysaccharide utilization loci (PULs) and several non-PUL-associated carbohydrate-active enzyme (CAZyme)-coding genes that putatively target starch, pectin, and/or cellulose were annotated in each of the isolate genomes. Type IX secretion system (T9SS)- and CAZyme-coding genes tagged with the corresponding T9SS recognition and export C-terminal domain were observed in some isolates, suggesting that these CAZymes were deployed via non-PUL outer membrane translocons. Additionally, single-substrate growth and enzymatic assays confirmed genomic predictions that a subset of the Bacteroides and Dysgonomonas isolates could degrade starch, pectin, and/or cellulosemore »and grow in the presence of these substrates as a single sugar source. Plant polysaccharides enrich P. americana diets, and many of these gut isolates are well equipped to exploit host dietary inputs and potentially contribute to gut community and host nutrient accessibility. IMPORTANCE Gut microbes are increasingly being recognized as critical contributors to nutrient accessibility in animals. The globally distributed omnivorous American cockroach ( Periplaneta americana ) harbors many bacterial phyla (e.g., Bacteroidetes ) that are abundant in vertebrates. P. americana thrives on a highly diverse plant-enriched diet, making this insect a rich potential source of uncharacterized polysaccharolytic bacteria. We have cultivated, completely sequenced, and functionally characterized several novel Bacteroidetes species that are endemic to the P. americana gut, and many of these isolates can degrade simple and complex polysaccharides. Cultivation and genomic characterization of these Bacteroidetes isolates further enable deeper insight into how these taxa participate in polysaccharide metabolism and, more broadly, how they affect animal health and development.« less
  4. Abstract Background

    Hibernating animals experience extreme changes in diet that make them useful systems for understanding host-microbial symbioses. However, most of our current knowledge about the hibernator gut microbiota is derived from studies using captive animals. Given that there are substantial differences between captive and wild environments, conclusions drawn from studies with captive hibernators may not reflect the gut microbiota’s role in the physiology of wild animals. To address this, we used Illumina-based sequencing of the 16S rRNA gene to compare the bacterial cecal microbiotas of captive and wild 13-lined ground squirrels (TLGS) in the summer. As the first study to use Illumina-based technology to compare the microbiotas of an obligate rodent hibernator across the year, we also reported changes in captive TLGS microbiotas in summer, winter, and spring.


    Wild TLGS microbiotas had greater richness and phylogenetic diversity with less variation in beta diversity when compared to captive microbiotas. Taxa identified as core operational taxonomic units (OTUs) and found to significantly contribute to differences in beta diversity were primarily in the familiesLachnospiraceaeandRuminococcaceae. Captive TLGS microbiotas shared phyla and core OTUs across the year, but active season (summer and spring) microbiotas had different alpha and beta diversities than winter season microbiotas.


    Thismore »is the first study to compare the microbiotas of captive and wild rodent hibernators. Our findings suggest that data from captive and wild ground squirrels should be interpreted separately due to their distinct microbiotas. Additionally, as the first study to compare seasonal microbiotas of obligate rodent hibernators using Illumina-based 16S rRNA sequencing, we reported changes in captive TLGS microbiotas that are consistent with previous work. Taken together, this study provides foundational information for improving the reproducibility and experimental design of future hibernation microbiota studies.

    « less
  5. Abstract

    Host-microbe interactions are intimately linked to eukaryotic evolution, particularly in sap-sucking insects that often rely on obligate microbial symbionts for nutrient provisioning. Cicadas (Cicadidae: Auchenorrhyncha) specialize on xylem fluid and derive many essential amino acids and vitamins from intracellular bacteria or fungi (Hodgkinia,Sulcia, andOphiocordyceps) that are propagated via transmission from mothers to offspring. Despite the beneficial role of these non-gut symbionts in nutrient provisioning, the role of beneficial microbiota within the gut remains unclear. Here, we investigate the relative abundance and impact of host phylogeny and ecology on gut microbial diversity in cicadas using 16S ribosomal RNA gene amplicon sequencing data from 197 wild-collected cicadas and new mitochondrial genomes across 38 New Zealand cicada species, including natural hybrids between one pair of two species. We find low abundance and a lack of phylogenetic structure and hybrid effects but a significant role of elevation in explaining variation in gut microbiota.