skip to main content


Title: HEK293 cell response to static magnetic fields via the radical pair mechanism may explain therapeutic effects of pulsed electromagnetic fields
PEMF (Pulsed Electromagnetic Field) stimulation has been used for therapeutic purposes for over 50 years including in the treatment of memory loss, depression, alleviation of pain, bone and wound healing, and treatment of certain cancers. However, the underlying cellular mechanisms mediating these effects have remained poorly understood. In particular, because magnetic field pulses will induce electric currents in the stimulated tissue, it is unclear whether the observed effects are due to the magnetic or electric component of the stimulation. Recently, it has been shown that PEMFs stimulate the formation of ROS (reactive oxygen species) in human cell cultures by a mechanism that requires cryptochrome, a putative magnetosensor. Here we show by qPCR analysis of ROS-regulated gene expression that simply removing cell cultures from the Earth’s geomagnetic field by placing them in a Low-Level Field condition induces similar effects on ROS signaling as does exposure of cells to PEMF. This effect can be explained by the so-called Radical Pair mechanism, which provides a quantum physical means by which the rates and product yields (e.g. ROS) of biochemical redox reactions may be modulated by magnetic fields. Since transient cancelling of the Earth’s magnetic field can in principle be achieved by PEMF exposure, we propose that the therapeutic effects of PEMFs may be explained by the ensuing modulation of ROS synthesis. Our results could lead to significant improvements in the design and therapeutic applications of PEMF devices.  more » « less
Award ID(s):
1658640
NSF-PAR ID:
10224417
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Cao, Yi
Date Published:
Journal Name:
PLOS ONE
Volume:
15
Issue:
12
ISSN:
1932-6203
Page Range / eLocation ID:
e0243038
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reactive oxygen species (ROS) signaling regulates cell behaviors and tissue growth in development, regeneration, and cancer. Commonly, ROS are modulated pharmacologically, which while effective comes with potential complications such as off-target effects and lack of drug tolerance. Thus, additional non-invasive therapeutic methods are necessary. Recent advances have highlighted the use of weak magnetic fields (WMFs, <1 mT) as one promising approach. We previously showed that 200 μT WMFs inhibit ROS formation and block planarian regeneration. However, WMF research in different model systems at various field strengths have produced a range of results that do not fit common dose response curves, making it unclear if WMF effects are predictable. Here, we test hypotheses based on spin state theory and the radical pair mechanism, which outlines how magnetic fields can alter the formation of radical pairs by changing electron spin states. This mechanism suggests that across a broad range of field strengths (0–900 μT) some WMF exposures should be able to inhibit while others promote ROS formation in a binary fashion. Our data reveal that WMFs can be used for directed manipulation of stem cell proliferation, differentiation, and tissue growth in predictable ways for both loss and gain of function during regenerative growth. Furthermore, we examine two of the most common ROS signaling effectors, hydrogen peroxide and superoxide, to begin the identification and elucidation of the specific molecular targets by which WMFs affect tissue growth. Together, our data reveal that the cellular effects of WMF exposure are highly dependent on ROS, and we identify superoxide as a specific ROS being modulated. Altogether, these data highlight the possibilities of using WMF exposures to control ROS signaling in vivo and represent an exciting new area of research. 
    more » « less
  2. Biological systems are constantly exposed to electromagnetic fields (EMFs) in the form of natural geomagnetic fields and EMFs emitted from technology. While strong magnetic fields are known to change chemical reaction rates and free radical concentrations, the debate remains about whether static weak magnetic fields (WMFs; <1 mT) also produce biological effects. Using the planarian regeneration model, we show that WMFs altered stem cell proliferation and subsequent differentiation via changes in reactive oxygen species (ROS) accumulation and downstream heat shock protein 70 (Hsp70) expression. These data reveal that on the basis of field strength, WMF exposure can increase or decrease new tissue formation in vivo, suggesting WMFs as a potential therapeutic tool to manipulate mitotic activity. 
    more » « less
  3. Transcranial magnetic stimulation (TMS) is one of the most widely used noninvasive brain stimulation methods. It has been utilized for both treatment and diagnosis of many neural diseases, such as neuropathic pain and loss of function caused by stroke. Existing TMS tools cannot deliver focused electric field to targeted penetration depth even though many important neurological disorders are originated from there. A breakthrough is needed to achieve noninvasive, focused brain stimulation. We demonstrated using magnetic shield to achieve magnetic focusing without sacrificing significant amount of throughput. The shield is composed of multiple layers of copper ring arrays, which utilize induced current to generate counter magnetic fields. We experimentally set up a two-pole stimulator system to verify device simulation. A transient magnetic field probe was used for field measurements. The focusing effect highly depends on the geometric design of shield. A tight focal spot with a diameter of smaller than 5 mm (plotted in MATLAB contour map) can be achieved by using copper ring arrays. With properly designed array structures and ring locations, the combined original and induced counter fields can produce a tightly focused field distribution with enhanced field strength at a depth of 7.5 mm beyond the shield plane, which is sufficient to reach many deep and critical parts of a mouse brain. 
    more » « less
  4. Abstract

    Particles are accelerated to very high, non-thermal energies during explosive energy-release phenomena in space, solar, and astrophysical plasma environments. While it has been established that magnetic reconnection plays an important role in the dynamics of Earth’s magnetosphere, it remains unclear how magnetic reconnection can further explain particle acceleration to non-thermal energies. Here we review recent progress in our understanding of particle acceleration by magnetic reconnection in Earth’s magnetosphere. With improved resolutions, recent spacecraft missions have enabled detailed studies of particle acceleration at various structures such as the diffusion region, separatrix, jets, magnetic islands (flux ropes), and dipolarization front. With the guiding-center approximation of particle motion, many studies have discussed the relative importance of the parallel electric field as well as the Fermi and betatron effects. However, in order to fully understand the particle acceleration mechanism and further compare with particle acceleration in solar and astrophysical plasma environments, there is a need for further investigation of, for example, energy partition and the precise role of turbulence.

     
    more » « less
  5. To develop active materials that can efficiently respond to external stimuli with designed mechanical motions is a major obstacle that have hindered the realization nanomachines and nanorobots. Here, we present our finding and investigation of an original working mechanism that allows multifold reconfigurable motion control in both rotation and alignment of semiconductor micromotors in an AC electric field with simple visible-light stimulation. In our previous work, we reported the instantly switchable electrorotation owing to the optically tunable imaginary part of electric polarization of a semiconductor nanowire in aqueous suspension[1]. Here we provide further experimental confirmation along with numerical simulation. Moreover, according to the Kramers-Kronig relation, the real part of the electric polarization should also be optically tunable, which can be experimentally verified with tests of electro-alignment of a nanowire. Here, we report our experimental study of light effect on electro-alignment along with theoretical simulation to complete the investigation of opto-tunable electric polarization of a semiconductor nanowire. Finally, we demonstrate a micromotor with periodically oscillating rotation with simple asymmetric exposure to a light pattern. This research could inspire development of a new class of micro/nanomachines with agile and spatially defined maneuverability. 
    more » « less