skip to main content

Title: Development of Focused Transcranial Magnetic Stimulation for Rodents by Copper-Array Shields
Transcranial magnetic stimulation (TMS) is one of the most widely used noninvasive brain stimulation methods. It has been utilized for both treatment and diagnosis of many neural diseases, such as neuropathic pain and loss of function caused by stroke. Existing TMS tools cannot deliver focused electric field to targeted penetration depth even though many important neurological disorders are originated from there. A breakthrough is needed to achieve noninvasive, focused brain stimulation. We demonstrated using magnetic shield to achieve magnetic focusing without sacrificing significant amount of throughput. The shield is composed of multiple layers of copper ring arrays, which utilize induced current to generate counter magnetic fields. We experimentally set up a two-pole stimulator system to verify device simulation. A transient magnetic field probe was used for field measurements. The focusing effect highly depends on the geometric design of shield. A tight focal spot with a diameter of smaller than 5 mm (plotted in MATLAB contour map) can be achieved by using copper ring arrays. With properly designed array structures and ring locations, the combined original and induced counter fields can produce a tightly focused field distribution with enhanced field strength at a depth of 7.5 mm beyond the shield plane, which is sufficient to reach many deep and critical parts more » of a mouse brain. « less
Authors:
Award ID(s):
1631820
Publication Date:
NSF-PAR ID:
10063432
Journal Name:
IEEE transactions on magnetics
ISSN:
1941-0069
Sponsoring Org:
National Science Foundation
More Like this
  1. Transcranial magnetic stimulation (TMS) is widely used for noninvasive brain stimulation. However, existing TMS tools cannot deliver targeted neural stimulation to deep brain regions, even though many important neurological disorders originate from there. To design TMS tools capable of delivering deep and focused stimulation, we have developed both electric and magnetic field probes to evaluate and improve new designs and calibrate products. Previous works related to magnetic field measurement had no detailed description of probe design or optimization. In this work, we demonstrated a magnetic field probe made of a cylindrical inductor and an electrical field probe modified from Rogowskimore »coil structure. Both have much smaller size and higher directivity than commercial dipole probes. Using probe, we can calibrate and monitor any new types of TMS coil or array design and verify measured results with the other probe. We mathematically analyze their characteristics and performance and obtained a two-dimensional vector plot of the induced electric field, which matched the measured results from the second type of probe. A commercial circular coil and a figure-8 coil, with relatively complex vector field distribution, were used as examples to demonstrate the high-resolution and accurate measurement capability of our probes.« less
  2. In recent years, there is an increasing interest in noninvasive treatments for neurological disorders like Alzheimer and Depression. Transcranial magnetic stimulation (TMS) is one of the most effective methods used for this purpose. The performance of TMS highly depends on the coils used for the generation of magnetic field and induced electric field particularly their designs affecting depth and focality tradeoff characteristics. Among a variety of proposed and used TMS coil designs, circular coils are commonly used both in research and medical and clinical applications. In current study, we focus on changing the outer and inner sizes (diameter) and windingmore »turns of ring coils and try to reach deeper brain regions without significant field strength decay. The induced electric field and the decay rate of the generated field with depth were studied with finite element method calculations. The results of the performed simulations indicate that larger diameter coils have a larger equivalent field emission aperture and produce larger footprint of induced electric field initially. However, their emission solid angles are smaller and, as a result, the field divergence or the decay rates of the generated field with depth are smaller as well, which give them a good potential to perform better for deep brain stimulation compared with that of smaller coil.« less
  3. Brain simulation techniques have demonstrated undisputable therapeutic effects on neural diseases. Invasive stimulation techniques like deep brain stimulation (DBS) and noninvasive techniques like transcranial magnetic stimulation (TMS) have been approved by FDA as treatments for many drug resist neural disorders and diseases. Developing noninvasive, deep, and targeted brain stimulation techniques is currently one of the important tasks in brain researches. Transcranial direct current stimulation (tDCS) and transcranial alternative current stimulation (tACS) techniques have the advantages of low cost and portability. However, neither of them can produce targeted stimulation due to lacking of electrical field focusing mechanism. Recently, Grossman et al.more »reported using the down beating signals of two tACS signals to accomplish focused stimulation. By sending two sine waves running at slightly different high frequencies (~2kHz), they demonstrated that they can modulate a “localized” neuron group at the difference frequency of the two sine waves and at the same time avoid excitation of neurons at other locations. As a result, equivalent focusing effect was accomplished by such beating mechanism. In this work, we show neither theoretically nor experimentally the beating mechanism can produce “focusing effect” and the beating signal spread globally across the full brain. The localized modulation effect likely happened right at the electrode contact sites when the electrode contact area is small and the current is concentrated. We conclude that to accomplish noninvasive and focused stimulation at current stage the only available tool is the focused TMS system we recently demonstrated.« less
  4. Abstract

    Optogenetics presents an alternative method for interfacing with the nervous system over the gold-standard of electrical stimulation. While electrical stimulation requires electrodes to be surgically embedded in tissue for in vivo studies, optical stimulation offers a less-invasive approach that may yield more specific, localized stimulation. The advent of optogenetic laboratory animals—whose motor neurons can be activated when illuminated with blue light—enables research into refining optical stimulation of the mammalian nervous system where subsets of nerve fibers within a nerve may be stimulated without embedding any device directly into the nerve itself. However, optical stimulation has a major drawback inmore »that light is readily scattered and absorbed in tissue thereby limiting the depth with which a single emission source can penetrate. We hypothesize that the use of multiple, focused light emissions deployed around the circumference of a nerve can overcome these light-scattering limitations. To understand the physical parameters necessary to produce pinpointed light stimulation within a single nerve, we employed a simplified Monte Carlo simulation to estimate the size of nerves where this technique may be successful, as well as the necessary optical lens design for emitters to be used during future in vivo studies. By modeling multiple focused beams, we find that only fascicles within a nerve diameter less than 1 mm are fully accessible to focused optical stimulation; a minimum of 4 light sources is required to generate a photon intensity at a point in a nerve over the initial contact along its surface. To elicit the same effect in larger nerves, focusing lenses would require a numerical aperture$$> 1$$>1. These simulations inform on the design of instrumentation capable of stimulating disparate motor neurons in mouse sciatic nerve to control hindlimb movement.

    « less
  5. Brain damage or disruption to the primary visual cortex sometimes produces blindsight, a striking condition in which patients lose the ability to consciously detect visual information yet retain the ability to discriminate some attributes without awareness. Although there have been few demonstrations of somatosensory equivalents of blindsight, the lesions that produce “numbsense,” in which patients can make accurate guesses about tactile information without awareness, have been rare and localized to different regions of the brain. Despite transient loss of tactile awareness in the contralateral hand after transcranial magnetic stimulation (TMS) of the primary somatosensory cortex but not TMS of amore »control site, 12 participants (six female) reliably performed at above-chance levels on a localization task. These results demonstrating TMS-induced numbsense implicate a parallel somatosensory pathway that processes the location of touch in the absence of awareness and highlight the importance of primary sensory cortices for conscious perception.« less