skip to main content

Title: Evaluate the Effect of Seat Back Restriction on Head, Neck and Torso Responses of Front Seat Occupants when Subjected to a Moderate Speed Rear-Impact
During high-speed rear impacts with delta-V > 25 km/h, the front seats may rotate rearward due to occupant and seat momentum change leading to possibly large seat deflection. One possible way of limiting this may be by introducing a structure that would restrict large rotations or deformations, however, such a structure would change the front seat occupant kinematics and kinetics. The goal of this study was to understand the influence of seat back restriction on head, neck and torso responses of front seat occupants when subjected to a moderate speed rear-impact. This was done by simulating a rear impact scenario with a delta-V of 37.4 km/h using LS-Dyna, with the GHBMC M50 occupant model and a manufacturer provided seat model. The study included two parts, the first part was to identify worst case scenarios using the simplified GHBMC M50-OS, and the second part was to further investigate the identified scenarios using the detailed GHBMC M50-O. The baseline condition included running the belted GHBMC on the seat at the specified pulse. This was followed by including a seatback constraint, a restriction bar, at 65 mm from the seat back to restrict rearward movement. Four different scenarios were investigated using the GHBMC more » M50-OS for the first part of the study both in the baseline and inclusion of a restriction bar behind the seatback: occupant seated normally; occupant offset on the seat; occupant rotated on the seat; and occupant seated normally but at a slightly oblique rear impact direction. The oblique condition was identified as the worst-case scenario based on the inter-vertebral kinematics; therefore, this condition was further investigated in the simulations with GHBMC M50-O. In the oblique rear impact scenario, the head missed the head restraint leading to inter-vertebral rotations exceeding the physiological range of motions regardless of the restriction bar use. However, adding a restriction bar behind the seat back showed a higher HIC and BrIC in both normal and oblique pulses due to the sudden stop, although the magnitudes were below the threshold. « less
Authors:
; ; ; ; ;
Award ID(s):
1650541
Publication Date:
NSF-PAR ID:
10224828
Journal Name:
SAE technical paper series
ISSN:
0148-7191
Sponsoring Org:
National Science Foundation
More Like this
  1. The importance of slab–slab interactions is manifested in the kinematics and geometry of the Philippine Sea Plate and western Pacific subduction zones, and such interactions offer a dynamic basis for the first-order observations in this complex subduction setting. The westward subduction of the Pacific Sea Plate changes, along-strike, from single slab subduction beneath Japan, to a double-subduction setting where Pacific subduction beneath the Philippine Sea Plate occurs in tandem with westward subduction of the Philippine Sea Plate beneath Eurasia. Our 3-D numerical models show that there are fundamental differences between single slab systems and double slab systems where both subductionmore »systems have the same vergence. We find that the observed kinematics and slab geometry of the Pacific–Philippine subduction can be understood by considering an along-strike transition from single to double subduction, and is largely independent from the detailed geometry of the Philippine Sea Plate. Important first order features include the relatively shallow slab dip, retreating/stationary trenches, and rapid subduction for single slab systems (Pacific Plate subducting under Japan), and front slabs within a double slab system (Philippine Sea Plate subducting at Ryukyu). In contrast, steep to overturned slab dips, advancing trench motion, and slower subduction occurs for rear slabs in a double slab setting (Pacific subducting at the Izu–Bonin–Mariana). This happens because of a relative build-up of pressure in the asthenosphere beneath the Philippine Sea Plate, where the asthenosphere is constrained between the converging Ryukyu and Izu–Bonin–Mariana slabs. When weak back-arc regions are included, slab–slab convergence rates slow and the middle (Philippine) plate extends, which leads to reduced pressure build up and reduced slab–slab coupling. Models without back-arcs, or with back-arc viscosities that are reduced by a factor of five, produce kinematics compatible with present-day observations.« less
  2. The constant increase in data center computational and processing requirements has led to increases in the IT equipment power demand and cooling challenges of highdensity (HD) data centers. As a solution to this, the hybrid and liquid systems are widely used as part of HD data centers thermal management solutions. This study presents an experimental based investigation and analysis of the transient thermal performance of a stand-alone server cabinet. The total heat load of the cabinet is controllable remotely and a rear door heat exchanger is attached with controllable water flow rate. The cooling performances of two different failure scenariosmore »are investigated. One is in the water chiller and another is in the water pump for the Rear Door Heat eXchanger (RDHX). In addition, the study reports the impact of each scenario on the IT equipment thermal response and on the cabinet outlet temperature using a mobile temperature and velocity mesh (MTVM) experimental tool. Furthermore, this study also addresses and characterizes the heat exchanger cooling performance during both scenarios.« less
  3. This work presents a novel prototype autonomous vehicle (AV) human-machine interface (HMI) in virtual reality (VR) that utilizes a human-like visual embodiment in the driver’s seat of an AV to communicate AV intent to pedestrians in a crosswalk scenario. There is currently a gap in understanding the use of virtual humans in AV HMIs for pedestrian crossing despite the demonstrated efcacy of human-like interfaces in improving human-machine relationships. We conduct a 3x2 within-subjects experiment in VR using our prototype to assess the efects of a virtual human visual embodiment AV HMI on pedestrian crossing behavior and experience. In the experimentmore »participants walk across a virtual crosswalk in front of an AV. How long they took to decide to cross and how long it took for them to reach the other side were collected, in addition to their subjective preferences and feelings of safety. Of 26 participants, 25 preferred the condition with the most anthropomorphic features. An intermediate condition where a human-like virtual driver was present but did not exhibit any behaviors was least preferred and also had a signifcant efect on time to decide. This work contributes the frst empirical work on using human-like visual embodiments for AV HMIs.« less
  4. Observational estimates of Antarctic ice loss have accelerated in recent decades, and worst-case scenarios of modeling studies have suggested potentially catastrophic sea level rise (~2 meters) by the end of the century. However, modeled contributions to global mean sea level from the Antarctic ice-sheet (AIS) in the 21st century are highly uncertain, in part because ice-sheet model parameters are poorly constrained. Individual ice-sheet model runs are also deterministic and not computationally efficient enough to generate the continuous probability distributions required for incorporation into a holistic framework of probabilistic sea-level projections. To address these shortfalls, we statistically emulate an ice-sheet modelmore »using Gaussian Process (GP) regression. GP modeling is a non-parametric machine-learning technique which maps inputs (e.g. forcing or model parameters) to target outputs (e.g. sea-level contributions from the Antarctic ice-sheet) and has the inherent and important advantage that emulator uncertainty is explicitly quantified. We construct emulators for the last interglacial period and an RCP8.5 scenario, and separately for the western, eastern, and total AIS. Separate emulation of western and eastern AIS is important because their evolutions and physical responses to climate forcing are distinct. The emulators are trained on 196 ensemble members for each scenario, composed by varying the parameters of maximum rate of ice-cliff wastage and the coefficient of hydrofracturing. We condition the emulators on last interglacial proxy sea-level records and modern GRACE measurements and exclude poor-fitting ensemble members. The resulting emulators are sampled to produce probability distributions that fill intermediate gaps between discrete ice-sheet model outcomes. We invert emulated high and low probability sea-level contributions in 2100 to explore 21st century evolution pathways; results highlight the deep uncertainty of ice-sheet model physics and the importance of using observations to narrow the range of parameters. Our approach is designed to be flexible such that other ice-sheet models or parameter spaces may be substituted and explored with the emulator.« less
  5. The transition from subduction to transform motion along horizontal terminations of trenches is associated with tearing of the subducting slab and strike-slip tectonics in the overriding plate. One prominent example is the northern Tonga subduction zone, where abundant strike-slip faulting in the NE Lau back-arc basin is associated with transform motion along the northern plate boundary and asymmetric slab rollback. Here, we address the fundamental question: how does this subduction-transform motion influence the structural and magmatic evolution of the back-arc region? To answer this, we undertake the first comprehensive study of the geology and geodynamics of this region through analysesmore »of morphotectonics (remote-predictive geologic mapping) and fault kinematics interpreted from ship-based multibeam bathymetry and Centroid-Moment Tensor data. Our results highlight two notable features of the NE Lau Basin: 1) the occurrence of widely distributed off-axis volcanism, in contrast to typical ridge-centered back-arc volcanism, and 2) fault kinematics dominated by shallow-crustal strike slip-faulting (rather than normal faulting) extending over ∼120 km from the transform boundary. The orientations of these strike-slip faults are consistent with reactivation of earlier-formed normal faults in a sinistral megashear zone. Notably, two distinct sets of Riedel megashears are identified, indicating a recent counter-clockwise rotation of part of the stress field in the back-arc region closest to the arc. Importantly, the Riedel structures identified in this study directly control the development of complex volcanic-compositional provinces, which are characterized by variably-oriented spreading centers, off-axis volcanic ridges, extensive lava flows, and point-source rear-arc volcanoes. This study adds to our understanding of the geologic and structural evolution of modern backarc systems, including the association between subduction-transform motions and the siting and style of seafloor volcanism.« less