skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Cardiopulmonary Effective Radar Cross Section (ERCS) for Orientation of Sedentary Subject Using Microwave Doppler Radar
Effective radar cross-section (ERCS) for microwave Doppler radar, is defined by the reflected power from sections of the human body that undergo physiological motion. This paper investigates ERCS for human cardiopulmonary motion of sedentary subjects at three different positions (front, back and side with respect to radar). While human breathing and heartbeat can be measured from all four sides of the body, the characteristics of measured signals will vary with body orientation. Thus, continuous wave radar with quadrature architecture at 2. 4GHz was used to test a sedentary subject for three minutes from three different orientations: front, back and side with respect to radar. The results obtained from the tests showed that physiological motion could be obtained and that distinct patterns emerge due to the differences in the ERCS for each orientation. For the seated subject, back ERCS was higher than for front and side positions. Determining ERCS changes with position may enable determining body orientation with respect to the radar. This research opens further opportunities for development of high-resolution occupancy sensing and emergency search and rescue sensing, where the orientation of a human subject may be unknown ahead of time.  more » « less
Award ID(s):
1915738 1831303
PAR ID:
10295834
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 IEEE Asia-Pacific Microwave Conference (APMC)
Page Range / eLocation ID:
971 to 973
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Doppler radar remote sensing of torso kinematics can provide an indirect measure of cardiopulmonary function. Motion at the human body surface due to heart and lung activity has been successfully used to characterize such measures as respiratory rate and depth, obstructive sleep apnea, and even the identity of an individual subject. For a sedentary subject, Doppler radar can track the periodic motion of the portion of the body moving as a result of the respiratory cycle as distinct from other extraneous motions that may occur, to provide a spatial temporal displacement pattern that can be combined with a mathematical model to indirectly assess quantities such as tidal volume, and paradoxical breathing. Furthermore, it has been demonstrated that even healthy respiratory function results in distinct motion patterns between individuals that vary as a function of relative time and depth measures over the body surface during the inhalation/exhalation cycle. Potentially, the biomechanics that results in different measurements between individuals can be further exploited to recognize pathology related to lung ventilation heterogeneity and other respiratory diagnostics. 
    more » « less
  2. null (Ed.)
    In-home sleep monitoring system using Microwave Doppler radar is gaining attention as it is unobtrusive and noncontact form of measurement. Most of the reported results in literature focused on utilizing radar-reflected signal amplitude to recognize Obstructive sleep apnea (OSA) events which requires iterative analysis and cannot recommend about sleep positions also (supine, prone and side). In this paper, we propose a new, robust and automated ERCS-based (Effective Radar Cross section) method for classifying OSA events (normal, apnea and hypopnea) by integrating radar system in a clinical setup. In our prior attempt, ERCS has been proven versatile method to recognize different sleep postures. We also employed two different machine learning classifiers (K-nearest neighbor (KNN) and Support Vector machine (SVM) to recognize OSA events from radar captured ERCS and breathing rate measurement from five different patients' clinical study. SVM with quadratic kernel outperformed with other classifiers with an accuracy of 96.7 % for recognizing different OSA events. The proposed system has several potential applications in healthcare, continuous monitoring and security/surveillance applications. 
    more » « less
  3. This paper proposes a spectral binning method for the classification of locomotion and extraneous body motion (EBM) that may occur during Continuous Wave (CW) Doppler radar motion sensing of human subjects. The method analyzes the spectral content of the arctangent demodulated displacement signature, generating an activity classification based on the magnitude of the spectral content for each of several frequency bins. The choice and number of bins used for the overall classification of data were determined by analyzing experimental data. The method successfully classified sedentary, EBM, and locomotion states for 5 subjects. The method can be used both for determining the presence and type of activity, and for recognizing when data segments are not suitable for monitoring sedentary vital signs. 
    more » « less
  4. null (Ed.)
    Radar is an attractive approach for identity authentication because it requires no contact and is unobtrusive. Most reported results have focused only on sedentary breathing patterns, without considering how respiratory patterns may change due to physiological activities or emotional stress. In this research the feasibility of extracting identifying features from radar respiratory traces was tested, for sedentary subject conditions as well as just after performing physiological activities (walking upstairs). Respiratory breathing dynamics related features (breathing rate, spectral entropy, breathing depth, inhale/exhale area ratio, mean and standard deviation of the peaks) were extracted from radar captured respiration patterns, and variations in feature parameters after physiological activities were assessed. Experimental results demonstrated that, after short exertions dynamically segmented respiratory pattern exhale area and breathing depth increased by more than 1.4 times for all participants, which made evident the uniqueness of residual heart volume after expiration for recognizing each subject even after short exertions. Our proposed approach is also integrated with a Support Vector Machine (SVM) with a radial basis function kernel to demonstrate an identification success rate of almost 98.55% for sedentary-only conditions and almost 92% for a combined mixture of conditions (sedentary and after short exertion). While the efficacy was reduced, the method still shows significant potential. The proposed identity authentication approach has several potential applications including security/surveillance, IOT applications, virtual reality and health monitoring as well. 
    more » « less
  5. An overnight sleep study can provide vital health diagnostics yet typically involves applying and monitoring multiple body-contact sensors, which can interfere with sleep and require cumbersome manual data analysis. Doppler radar technology has been demonstrated to provide a non-invasive means of measuring vital signs through clothing and bedding, including respiratory rate, heart rate, motion activity, body position, and tidal respiratory volume. This paper examines the potential for applying physiological radar to assess sleep apnea and intervention strategies. 
    more » « less