skip to main content


Title: Cardiopulmonary Effective Radar Cross Section (ERCS) for Orientation of Sedentary Subject Using Microwave Doppler Radar
Effective radar cross-section (ERCS) for microwave Doppler radar, is defined by the reflected power from sections of the human body that undergo physiological motion. This paper investigates ERCS for human cardiopulmonary motion of sedentary subjects at three different positions (front, back and side with respect to radar). While human breathing and heartbeat can be measured from all four sides of the body, the characteristics of measured signals will vary with body orientation. Thus, continuous wave radar with quadrature architecture at 2. 4GHz was used to test a sedentary subject for three minutes from three different orientations: front, back and side with respect to radar. The results obtained from the tests showed that physiological motion could be obtained and that distinct patterns emerge due to the differences in the ERCS for each orientation. For the seated subject, back ERCS was higher than for front and side positions. Determining ERCS changes with position may enable determining body orientation with respect to the radar. This research opens further opportunities for development of high-resolution occupancy sensing and emergency search and rescue sensing, where the orientation of a human subject may be unknown ahead of time.  more » « less
Award ID(s):
1915738 1831303
NSF-PAR ID:
10295834
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 IEEE Asia-Pacific Microwave Conference (APMC)
Page Range / eLocation ID:
971 to 973
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In-home sleep monitoring system using Microwave Doppler radar is gaining attention as it is unobtrusive and noncontact form of measurement. Most of the reported results in literature focused on utilizing radar-reflected signal amplitude to recognize Obstructive sleep apnea (OSA) events which requires iterative analysis and cannot recommend about sleep positions also (supine, prone and side). In this paper, we propose a new, robust and automated ERCS-based (Effective Radar Cross section) method for classifying OSA events (normal, apnea and hypopnea) by integrating radar system in a clinical setup. In our prior attempt, ERCS has been proven versatile method to recognize different sleep postures. We also employed two different machine learning classifiers (K-nearest neighbor (KNN) and Support Vector machine (SVM) to recognize OSA events from radar captured ERCS and breathing rate measurement from five different patients' clinical study. SVM with quadratic kernel outperformed with other classifiers with an accuracy of 96.7 % for recognizing different OSA events. The proposed system has several potential applications in healthcare, continuous monitoring and security/surveillance applications. 
    more » « less
  2. null (Ed.)
    Radar is an attractive approach for identity authentication because it requires no contact and is unobtrusive. Most reported results have focused only on sedentary breathing patterns, without considering how respiratory patterns may change due to physiological activities or emotional stress. In this research the feasibility of extracting identifying features from radar respiratory traces was tested, for sedentary subject conditions as well as just after performing physiological activities (walking upstairs). Respiratory breathing dynamics related features (breathing rate, spectral entropy, breathing depth, inhale/exhale area ratio, mean and standard deviation of the peaks) were extracted from radar captured respiration patterns, and variations in feature parameters after physiological activities were assessed. Experimental results demonstrated that, after short exertions dynamically segmented respiratory pattern exhale area and breathing depth increased by more than 1.4 times for all participants, which made evident the uniqueness of residual heart volume after expiration for recognizing each subject even after short exertions. Our proposed approach is also integrated with a Support Vector Machine (SVM) with a radial basis function kernel to demonstrate an identification success rate of almost 98.55% for sedentary-only conditions and almost 92% for a combined mixture of conditions (sedentary and after short exertion). While the efficacy was reduced, the method still shows significant potential. The proposed identity authentication approach has several potential applications including security/surveillance, IOT applications, virtual reality and health monitoring as well. 
    more » « less
  3. We present a virtual reality (VR) framework for the analysis of whole human body surface area. Usual methods for determining the whole body surface area (WBSA) are based on well known formulae, characterized by large errors when the subject is obese, or belongs to certain subgroups. For these situations, we believe that a computer vision approach can overcome these problems and provide a better estimate of this important body indicator. Unfortunately, using machine learning techniques to design a computer vision system able to provide a new body indicator that goes beyond the use of only body weight and height, entails a long and expensive data acquisition process. A more viable solution is to use a dataset composed of virtual subjects. Generating a virtual dataset allowed us to build a pop- ulation with different characteristics (obese, underweight, age, gender). However, synthetic data might differ from a real scenario, typical of the physician’s clinic. For this reason we develop a new virtual environment to facilitate the analysis of human subjects in 3D. This framework can simulate the acquisition process of a real camera, making it easy to analyze and to create training data for machine learning algorithms. With this virtual environment, we can easily simulate the real setup of a clinic, where a subject is standing in front of a cam- era, or may assume a different pose with respect to the camera. We use this newly desig- nated environment to analyze the whole body surface area (WBSA). In particular, we show that we can obtain accurate WBSA estimations with just one view, virtually enabling the pos- sibility to use inexpensive depth sensors (e.g., the Kinect) for large scale quantification of the WBSA from a single view 3D map. 
    more » « less
  4. Spatial perspective taking is an essential cognitive ability that enables people to imagine how an object or scene would appear from a perspective different from their current physical viewpoint. This process is fundamental for successful navigation, especially when people utilize navigational aids (e.g., maps) and the information provided is shown from a different perspective. Research on spatial perspective taking is primarily conducted using paper-pencil tasks or computerized figural tasks. However, in daily life, navigation takes place in a three-dimensional (3D) space and involves movement of human bodies through space, and people need to map the perspective indicated by a 2D, top down, external representation to their current 3D surroundings to guide their movements to goal locations. In this study, we developed an immersive viewpoint transformation task (iVTT) using ambulatory virtual reality (VR) technology. In the iVTT, people physically walked to a goal location in a virtual environment, using a first-person perspective, after viewing a map of the same environment from a top-down perspective. Comparing this task with a computerized version of a popular paper-and-pencil perspective taking task (SOT: Spatial Orientation Task), the results indicated that the SOT is highly correlated with angle production error but not distance error in the iVTT. Overall angular error in the iVTT was higher than in the SOT. People utilized intrinsic body axes (front/back axis or left/right axis) similarly in the SOT and the iVTT, although there were some minor differences. These results suggest that the SOT and the iVTT capture common variance and cognitive processes, but are also subject to unique sources of error caused by different cognitive processes. The iVTT provides a new immersive VR paradigm to study perspective taking ability in a space encompassing human bodies, and advances our understanding of perspective taking in the real world. 
    more » « less
  5. In an indoor space, determining a person’s speed of mobility has a lot of research significance and applicability in real-world scenarios. This research has developed a mobile application to investigate how to determine a person’s walking speed. The goal was to determine a person’s walking speed by using the number of steps. There has been similar work to test the accelerometer sensor in detecting steps. However, the accuracy of using the steps to calculate the velocity was not studied. This application uses the accelerometer sensor in the mobile device to detect steps and then compute the velocity. The accelerometer provides information about the user’s motion and acceleration, and an algorithm was developed to use that data to determine the steps. Once steps are determined, the person’s speed is calculated by using the change of location within a pre-determined space and time. Therefore, accurately measuring the number of steps was vital and it was determined that the position of the mobile device in the body plays a significant role in that accuracy. Therefore, the experiment used three device positions: the pants front pocket, the right hand, and the backpack. While walking, the number of steps were manually counted and recorded. A comparison was made between the recorded number of steps to the application’s measured steps. The experiment was conducted multiple times for each device position. The placement of the mobile devices in the front pants pocket gives the most accurate results, whereas the other two device positions gave reasonably accurate results. The position of the device played an important part in the research and had a significant impact on the accuracy of the results. In the future, testing can include additional device positions. Additionally, other mobile device sensors could be included in the testing and can be compared with this approach. 
    more » « less