skip to main content

Title: The role of Ca 2+ and protein scaffolding in the formation of nature’s water oxidizing complex
Photosynthetic O 2 evolution is catalyzed by the Mn 4 CaO 5 cluster of the water oxidation complex of the photosystem II (PSII) complex. The photooxidative self-assembly of the Mn 4 CaO 5 cluster, termed photoactivation, utilizes the same highly oxidizing species that drive the water oxidation in order to drive the incorporation of Mn 2+ into the high-valence Mn 4 CaO 5 cluster. This multistep process proceeds with low quantum efficiency, involves a molecular rearrangement between light-activated steps, and is prone to photoinactivation and misassembly. A sensitive polarographic technique was used to track the assembly process under flash illumination as a function of the constituent Mn 2+ and Ca 2+ ions in genetically engineered membranes of the cyanobacterium Synechocystis sp. PCC6803 to elucidate the action of Ca 2+ and peripheral proteins. We show that the protein scaffolding organizing this process is allosterically modulated by the assembly protein Psb27, which together with Ca 2+ stabilizes the intermediates of photoactivation, a feature especially evident at long intervals between photoactivating flashes. The results indicate three critical metal-binding sites: two Mn and one Ca, with occupation of the Ca site by Ca 2+ critical for the suppression of photoinactivation. The long-observed competition between more » Mn 2+ and Ca 2+ occurs at the second Mn site, and its occupation by competing Ca 2+ slows the rearrangement. The relatively low overall quantum efficiency of photoactivation is explained by the requirement of correct occupancy of these metal-binding sites coupled to a slow restructuring of the protein ligation environment, which are jointly necessary for the photooxidative trapping of the first stable assembly intermediate. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the National Academy of Sciences
Page Range or eLocation-ID:
28036 to 28045
Sponsoring Org:
National Science Foundation
More Like this
  1. S100A12 or Calgranulin C is a homodimeric antimicrobial protein of the S100 family of EF-hand calcium-modulated proteins. S100A12 is involved in many diseases like inflammation, tumor invasion, cancer and neurological disorders like Alzheimer’s disease. The binding of transition metal ions to the protein is important as the sequestering of the metal ion induces conformational changes in the protein, inhibiting the growth of various pathogenic microorganisms. In this work, we probe the Cu(II) binding properties of Calgranulin C. We demonstrate that the two Cu(II) binding sites in Calgranulin C show different coordination environments in solution. Electron spin resonance (ESR) spectra of Cu(II)-bound protein clearly show two distinct components at higher Cu(II):protein ratios, which is indicative of the two different binding environments for the Cu(II) ions. The g|| and A|| values are also different for the two components, indicating that the number of directly coordinated nitrogens in each site differs. Furthermore, we perform Continuous Wave (CW)-titrations to obtain the binding affinity of the Ca(II)-loaded protein to Cu2+ ions. We observe a positive cooperativity in binding of the two Cu(II) ions. In order to further probe the Cu2+ coordination, we also perform Electron Spin Echo Envelope Modulation (ESEEM) experiment. We perform ESEEM atmore »two different fields where one Cu(II) binding site dominates over the other. At both sites we see distinct signatures of Cu(II)-histidine coordination. However, we clearly see that the ESEEM spectra corresponding to the two Cu2+ binding sites are significantly different. There is clear change in the intensity of the double quantum (DQ) peak with respect to the nuclear quadrupole interaction (NQI) peak at the two different fields. Furthermore, ESEEM along with Hyperfine Sublevel Correlation (HYSCORE) show that only one of the two Cu(II) binding sites has backbone coordination, confirming our previous observation. Finally, we perform Double Electron Electron Resonance (DEER) spectroscopy to probe if the difference in binding environment is due to the Cu(II) binding to different sites in the protein. We obtain a distance distribution with a sharp peak at ~ 3 nm and a broad peak at ~ 4 nm. The shorter distance agrees with the Cu(II)-Cu(II) distance expected for a dimer from the crystal structure. The longer distance is consistent with the Cu(II)-Cu(II) distance when oligomerization occurs.« less
  2. Exotic perovskites significantly enrich materials for multiferroic and magnetoelectric applications. However, their design and synthesis is a challenge due to the mostly required recipe conditions at extremely high pressure. Herein, we presented the Ca 2−x Mn x MnTaO 6 (0 ≤ x ≤ 1.0) solid solutions stabilized by chemical pressure assisted with intermediate physical pressure up to 7 GPa. The incorporation of Mn 2+ into the A-site neither drives any cationic ordering nor modifies the orthorhombic Pbnm structure, namely written as (Ca 1−x/2 Mn x/2 )(Mn 1/2 Ta 1/2 )O 3 with disordered A and B site cationic arrangements. The increment of x is accompanied by a ferromagnetic to antiferromagnetic transition around x = 0.2, which is attributed to the double-exchange interactions between A-site Mn 2+ and B-site Mn 3+ . Partial charge disproportionation of the B-site Mn 3+ into Mn 2+ and Mn 4+ occurs for x above 0.8 samples as manifested by X-ray spectrum and magnetic behaviors. The coexistence of B-site Mn 3+ (Jahn–Teller distortion ion) and B′-site Ta 5+ (second-order Jahn–Teller distortion ion) could be energetically responsible for the absence of A-site columnar ordering as observed in other quadruple perovskites with half of the A-sites occupied bymore »small transition-metal cations. These exceptional findings indicate that exotic perovskites can be successfully stabilized at chemical and intermediate physical pressure, and the presence of Jahn–Teller distortion cations at the same lattice should be avoided to enable cationic ordering.« less
  3. Electron paramagnetic resonance (EPR) based distance measurements have been exploited to measure protein–protein docking, protein–DNA interactions, substrate binding and metal coordination sites. Here, we use EPR to locate a native paramagnetic metal binding site in a protein with less than 2 Å resolution. We employ a rigid Cu 2+ binding motif, the double histidine (dHis) motif, in conjunction with double electron electron resonance (DEER) spectroscopy. Specifically, we utilize a multilateration approach to elucidate the native Cu 2+ binding site in the immunoglobulin binding domain of protein G. Notably, multilateration performed with the dHis motif required only the minimum number of four distance constraints, whereas comparable studies using flexible nitroxide-based spin labels require many more for similar precision. This methodology demonstrates a significant increase in the efficiency of structural determinations via EPR distance measurements using the dHis motif.
  4. Under anaerobic conditions, ferrous iron reacts with sulfide producing FeS, which can then undergo a temperature, redox potential, and pH dependent maturation process resulting in the formation of oxidized mineral phases, such as greigite or pyrite. A greater understanding of this maturation process holds promise for the development of iron-sulfide catalysts, which are known to promote diverse chemical reactions, such as H + , CO 2 and NO 3 − reduction processes. Hampering the full realization of the catalytic potential of FeS, however, is an incomplete knowledge of the molecular and redox processess ocurring between mineral and nanoparticulate phases. Here, we investigated the chemical properties of iron-sulfide by cyclic voltammetry, Raman and X-ray absorption spectroscopic techniques. Tracing oxidative maturation pathways by varying electrode potential, nanoparticulate n (Fe 2+ S 2− ) (s) was found to oxidize to a Fe 3+ containing FeS phase at −0.5 V vs. Ag/AgCl (pH = 7). In a subsequent oxidation, polysulfides are proposed to give a material that is composed of Fe 2+ , Fe 3+ , S 2− and polysulfide (S n 2− ) species, with its composition described as Fe 2+ 1−3 x Fe 3+ 2 x S 2− 1− y (S nmore »2− ) y . Thermodynamic properties of model compounds calculated by density functional theory indicate that ligand oxidation occurs in conjunction with structural rearrangements, whereas metal oxidation may occur prior to structural rearrangement. These findings together point to the existence of a metastable FeS phase located at the junction of a metal-based oxidation path between FeS and greigite (Fe 2+ Fe 3+ 2 S 2− 4 ) and a ligand-based oxidation path between FeS and pyrite (Fe 2+ (S 2 ) 2− ).« less
  5. Cation site occupation is an important determinant of materials properties, especially in a complex system with multiple cations such as in ternary spinels. Many methods for extracting the cation site information have been explored in the past, including analysis of spectra obtained through K-edge X-ray absorption spectroscopy (XAS). In this work, we measure the effectiveness of X-ray emission spectroscopy (XES) for determining the cation site occupation. As a test system we use spinel phase Co x Mn 3−x O 4 nanoparticles contaminated with CoO phases because Co and Mn can occupy all cation sites and the impurity simulates typical products of oxide syntheses. We take advantage of the spin and oxidation state sensitive Kβ 1,3 peak obtained using XES and demonstrate that XES is a powerful and reliable technique for determining site occupation in ternary spinel systems. Comparison between the extended X-ray absorption fine structure (EXAFS) and XES techniques reveals that XES provides not only the site occupation information as EXAFS, but also additional information on the oxidation states of the cations at each site. We show that the error for EXAFS can be as high as 35% which makes the results obtained ambiguous for certain stoichiometries, whereas for XES,more »the error determined is consistently smaller than 10%. Thus, we conclude that XES is a superior and a far more accurate method than XAS in extracting cation site occupation in spinel crystal structures.« less