skip to main content

Title: Geographic Variation in Salt Marsh Structure and Function for Nekton: a Guide to Finding Commonality Across Multiple Scales
Coastal salt marshes are distributed widely across the globe and are considered essential habitat for many fish and crustacean species. Yet, the literature on fishery support by salt marshes has largely been based on a few geographically distinct model systems, and as a result, inadequately captures the hierarchical nature of salt marsh pattern, process, and variation across space and time. A better understanding of geographic variation and drivers of commonalities and differences across salt marsh systems is essential to informing future management practices. Here, we address the key drivers of geographic variation in salt marshes: hydroperiod, seascape configuration, geomorphology, climatic region, sediment supply and riverine input, salinity, vegetation composition, and human activities. Future efforts to manage, conserve, and restore these habitats will require consideration of how environmental drivers within marshes affect the overall structure and subsequent function for fisheries species. We propose a future research agenda that provides both the consistent collection and reporting of sources of variation in small-scale studies and collaborative networks running parallel studies across large scales and geographically distinct locations to provide analogous information for data poor locations. These comparisons are needed to identify and prioritize restoration or conservation efforts, identify sources of variation among regions, more » and best manage fisheries and food resources across the globe. Introduction Understanding the drivers of geographic variation in the condition and composition of habitats is crucial to our capacity to generalize management plans across space and time and to clarify and perhaps challenge assumptions of functional equivalence among sites. Broadly defined wetland types such as salt marshes are often assumed to provide similar functions throughout their global range, such as providing nursery habitat for fishery species. However, a growing body of evidence suggests substantial geographic variation in the functioning of salt marsh and other coastal ecosystems (Bradley et al. 2020; Whalen et al. 2020). Variation in ecological patterns and processes within habitat types can alter community structure and dynamics. Local-scale patterns and processes (e.g., patch [10s of meters], local [100s of meters]) can be influenced by processes that occur at larger spatial scales (e.g., regional [kms], global), thereby causing geographic differences in the function and ecosystem service delivery of a given habitat type. Salt marshes (which include vegetated platform, interconnected tidal creeks, fringing mudflats, ponds, and pools) are widely distributed (Fig. 1) and function as valuable nursery habitats by providing key resources for many estuarine species that transition to marine or aquatic habitats as adults (Beck et al. 2001; Minello et al. 2003; Sheaves et al. 2015). However, factors that underlie variability in the delivery of ecological functions are still inadequately understood. Previous studies have explored geographic variation in the function of salt marshes for fish and mobile crustaceans (“nekton”; e.g., Minello et al. 2012, Baker et al. 2013). However, field studies that compare multiple sites across a geographical gradient are typically limited in duration and scale. In addition, the explanatory variables (e.g., elevation, flooding duration, plant structure) collected by smaller scale studies are often inconsistent and therefore limit generalizations across sites. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1902704 1902712 1637630
Publication Date:
NSF-PAR ID:
10225100
Journal Name:
Estuaries and Coasts
ISSN:
1559-2723
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background Exploring hybrid zone dynamics at different spatial scales allows for better understanding of local factors that influence hybrid zone structure. In this study, we tested hypotheses about drivers of introgression at two spatial scales within the Saltmarsh Sparrow ( Ammospiza caudacuta ) and Nelson’s Sparrow ( A. nelsoni ) hybrid zone. Specifically, we evaluated the influence of neutral demographic processes (relative species abundance), natural selection (exogenous environmental factors and genetic incompatibilities), and sexual selection (assortative mating) in this mosaic hybrid zone. By intensively sampling adults (n = 218) and chicks (n = 326) at two geographically proximate locations in the center ofmore »the hybrid zone, we determined patterns of introgression on a fine scale across sites of differing habitat. We made broadscale comparisons of patterns from the center with those of prior studies in the southern edge of the hybrid zone. Results A panel of fixed SNPs (135) identified from ddRAD sequencing was used to calculate a hybrid index and determine genotypic composition/admixture level of the populations. Another panel of polymorphic SNPs (589) was used to assign paternity and reconstruct mating pairs to test for sexual selection. On a broad-scale, patterns of introgression were not explained by random mating within marshes. We found high rates of back-crossing and similarly low rates of recent-generation (F1/F2) hybrids in the center and south of the zone. Offspring genotypic proportions did not meet those expected from random mating within the parental genotypic distribution. Additionally, we observed half as many F1/F2 hybrid female adults than nestlings, while respective male groups showed no difference, in support of Haldane’s Rule. The observed proportion of interspecific mating was lower than expected when accounting for mate availability, indicating assortative mating was limiting widespread hybridization. On a fine spatial scale, we found variation in the relative influence of neutral and selective forces between inland and coastal habitats, with the smaller, inland marsh influenced primarily by neutral demographic processes, and the expansive, coastal marsh experiencing higher selective pressures in the form of natural (exogenous and endogenous) and sexual selection. Conclusions Multiple drivers of introgression, including neutral and selective pressures (exogenous, endogenous, and sexual selection), are structuring this hybrid zone, and their relative influence is site and context-dependent.« less
  2. Abstract Blue crabs ( Callinectes sapidus ) are highly mobile, ecologically-important mesopredators that support multimillion-dollar fisheries along the western Atlantic Ocean. Understanding how blue crabs respond to coastal landscape change is integral to conservation and management, but such insights have been limited to a narrow range of habitats and spatial scales. We examined how local-scale to landscape-scale habitat characteristics and bathymetric features (channels and oceanic inlets) affect the relative abundance (catch per unit effort, CPUE) of adult blue crabs across a > 33 km 2 seagrass landscape in coastal Virginia, USA. We found that crab CPUE was 1.7 × higher in sparse (versus dense)more »seagrass, 2.4 × higher at sites farther from (versus nearer to) salt marshes, and unaffected by proximity to oyster reefs. The probability that a trapped crab was female was 5.1 × higher in sparse seagrass and 8 × higher near deep channels. The probability of a female crab being gravid was 2.8 × higher near seagrass meadow edges and 3.3 × higher near deep channels. Moreover, the likelihood of a gravid female having mature eggs was 16 × greater in sparse seagrass and 32 × greater near oceanic inlets. Overall, we discovered that adult blue crab CPUE is influenced by seagrass, salt marsh, and bathymetric features on scales from meters to kilometers, and that habitat associations depend on sex and reproductive stage. Hence, accelerating changes to coastal geomorphology and vegetation will likely alter the abundance and distribution of adult blue crabs, challenging marine spatial planning and ecosystem-based fisheries management.« less
  3. Abstract Climate change is altering naturally fluctuating environmental conditions in coastal and estuarine ecosystems across the globe. Departures from long-term averages and ranges of environmental variables are increasingly being observed as directional changes [e.g., rising sea levels, sea surface temperatures (SST)] and less predictable periodic cycles (e.g., Atlantic or Pacific decadal oscillations) and extremes (e.g., coastal flooding, marine heatwaves). Quantifying the short- and long-term impacts of climate change on tidal marsh seascape structure and function for nekton is a critical step toward fisheries conservation and management. The multiple stressor framework provides a promising approach for advancing integrative, cross-disciplinary research onmore »tidal marshes and food web dynamics. It can be used to quantify climate change effects on and interactions between coastal oceans (e.g., SST, ocean currents, waves) and watersheds (e.g., precipitation, river flows), tidal marsh geomorphology (e.g., vegetation structure, elevation capital, sedimentation), and estuarine and coastal nekton (e.g., species distributions, life history adaptations, predator-prey dynamics). However, disentangling the cumulative impacts of multiple interacting stressors on tidal marshes, whether the effects are additive, synergistic, or antagonistic, and the time scales at which they occur, poses a significant research challenge. This perspective highlights the key physical and ecological processes affecting tidal marshes, with an emphasis on the trophic linkages between marsh production and estuarine and coastal nekton, recommended for consideration in future climate change studies. Such studies are urgently needed to understand climate change effects on tidal marshes now and into the future.« less
  4. Facilitation cascades are chains of positive interactions that occur as frequently as trophic cascades, and are equally important drivers of ecosystem function where they involve the overlap of primary and secondary, or dependent, habitat-forming foundation species [cite]. Although it is well-recognized that the size and configuration of secondary foundation species’ patches are critical features modulating the ecological effects of facilitation cascades, the mechanisms governing their spatial distribution are often challenging to discern given that they operate across multiple spatial and temporal scales [cite]. We therefore combined regional surveys of southeastern US salt marsh geomorphology and invertebrate communities with a predatormore »exclusion experiment to elucidate the drivers, both geomorphic and biotic, controlling the establishment, persistence, and ecosystem functioning impacts of a regionally-abundant facilitation cascade involving habitat-forming marsh cordgrass and aggregations of ribbed mussels. We discovered a hierarchy of physical and biological factors predictably controlling the strength and self-organization of this facilitation cascade across creekshed, landscape, and patch scales. These results significantly enhance our capacity to spatially predict coastal ecosystem function across scales based on easily identifiable metrics of geomorphology that are mechanistically linked to ecological processes [cite]. Replication of this approach across vegetated coastal ecosystems has the potential to support management efforts by elucidating the multi-scale linkages between geomorphology and ecology that, in turn, define spatially-explicit patterns in community assembly and ecosystem functioning.« less
  5. Abstract Invasive consumers can cause extensive ecological damage to native communities but effects on ecosystem resilience are less understood. Here, we use drone surveys, manipulative experiments, and mathematical models to show how feral hogs reduce resilience in southeastern US salt marshes by dismantling an essential marsh cordgrass-ribbed mussel mutualism. Mussels usually double plant growth and enhance marsh resilience to extreme drought but, when hogs invade, switch from being essential for plant survival to a liability; hogs selectively forage in mussel-rich areas leading to a 50% reduction in plant biomass and slower post-drought recovery rate. Hogs increase habitat fragmentation across landscapesmore »by maintaining large, disturbed areas through trampling of cordgrass during targeted mussel consumption. Experiments and climate-disturbance recovery models show trampling alone slows marsh recovery by 3x while focused mussel predation creates marshes that may never recover from large-scale disturbances without hog eradication. Our work highlights that an invasive consumer can reshape ecosystems not just via competition and predation, but by disrupting key, positive species interactions that underlie resilience to climatic disturbances.« less