skip to main content

Title: Climate Change Implications for Tidal Marshes and Food Web Linkages to Estuarine and Coastal Nekton
Abstract Climate change is altering naturally fluctuating environmental conditions in coastal and estuarine ecosystems across the globe. Departures from long-term averages and ranges of environmental variables are increasingly being observed as directional changes [e.g., rising sea levels, sea surface temperatures (SST)] and less predictable periodic cycles (e.g., Atlantic or Pacific decadal oscillations) and extremes (e.g., coastal flooding, marine heatwaves). Quantifying the short- and long-term impacts of climate change on tidal marsh seascape structure and function for nekton is a critical step toward fisheries conservation and management. The multiple stressor framework provides a promising approach for advancing integrative, cross-disciplinary research on tidal marshes and food web dynamics. It can be used to quantify climate change effects on and interactions between coastal oceans (e.g., SST, ocean currents, waves) and watersheds (e.g., precipitation, river flows), tidal marsh geomorphology (e.g., vegetation structure, elevation capital, sedimentation), and estuarine and coastal nekton (e.g., species distributions, life history adaptations, predator-prey dynamics). However, disentangling the cumulative impacts of multiple interacting stressors on tidal marshes, whether the effects are additive, synergistic, or antagonistic, and the time scales at which they occur, poses a significant research challenge. This perspective highlights the key physical and ecological processes affecting tidal marshes, with more » an emphasis on the trophic linkages between marsh production and estuarine and coastal nekton, recommended for consideration in future climate change studies. Such studies are urgently needed to understand climate change effects on tidal marshes now and into the future. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Award ID(s):
1902704 1902712 1637630
Publication Date:
NSF-PAR ID:
10225101
Journal Name:
Estuaries and Coasts
ISSN:
1559-2723
Sponsoring Org:
National Science Foundation
More Like this
  1. Coastal salt marshes are distributed widely across the globe and are considered essential habitat for many fish and crustacean species. Yet, the literature on fishery support by salt marshes has largely been based on a few geographically distinct model systems, and as a result, inadequately captures the hierarchical nature of salt marsh pattern, process, and variation across space and time. A better understanding of geographic variation and drivers of commonalities and differences across salt marsh systems is essential to informing future management practices. Here, we address the key drivers of geographic variation in salt marshes: hydroperiod, seascape configuration, geomorphology, climatic region, sediment supply and riverine input, salinity, vegetation composition, and human activities. Future efforts to manage, conserve, and restore these habitats will require consideration of how environmental drivers within marshes affect the overall structure and subsequent function for fisheries species. We propose a future research agenda that provides both the consistent collection and reporting of sources of variation in small-scale studies and collaborative networks running parallel studies across large scales and geographically distinct locations to provide analogous information for data poor locations. These comparisons are needed to identify and prioritize restoration or conservation efforts, identify sources of variation among regions,more »and best manage fisheries and food resources across the globe. Introduction Understanding the drivers of geographic variation in the condition and composition of habitats is crucial to our capacity to generalize management plans across space and time and to clarify and perhaps challenge assumptions of functional equivalence among sites. Broadly defined wetland types such as salt marshes are often assumed to provide similar functions throughout their global range, such as providing nursery habitat for fishery species. However, a growing body of evidence suggests substantial geographic variation in the functioning of salt marsh and other coastal ecosystems (Bradley et al. 2020; Whalen et al. 2020). Variation in ecological patterns and processes within habitat types can alter community structure and dynamics. Local-scale patterns and processes (e.g., patch [10s of meters], local [100s of meters]) can be influenced by processes that occur at larger spatial scales (e.g., regional [kms], global), thereby causing geographic differences in the function and ecosystem service delivery of a given habitat type. Salt marshes (which include vegetated platform, interconnected tidal creeks, fringing mudflats, ponds, and pools) are widely distributed (Fig. 1) and function as valuable nursery habitats by providing key resources for many estuarine species that transition to marine or aquatic habitats as adults (Beck et al. 2001; Minello et al. 2003; Sheaves et al. 2015). However, factors that underlie variability in the delivery of ecological functions are still inadequately understood. Previous studies have explored geographic variation in the function of salt marshes for fish and mobile crustaceans (“nekton”; e.g., Minello et al. 2012, Baker et al. 2013). However, field studies that compare multiple sites across a geographical gradient are typically limited in duration and scale. In addition, the explanatory variables (e.g., elevation, flooding duration, plant structure) collected by smaller scale studies are often inconsistent and therefore limit generalizations across sites.« less
  2. Global assessments predict the impact of sea-level rise on salt marshes with present-day levels of sediment supply from rivers and the coastal ocean. However, these assessments do not consider that variations in marsh extent and the related reconfiguration of intertidal area affect local sediment dynamics, ultimately controlling the fate of the marshes themselves. We conducted a meta-analysis of six bays along the United States East Coast to show that a reduction in the current salt marsh area decreases the sediment availability in estuarine systems through changes in regional-scale hydrodynamics. This positive feedback between marsh disappearance and the ability of coastal bays to retain sediments reduces the trapping capacity of the whole tidal system and jeopardizes the survival of the remaining marshes. We show that on marsh platforms, the sediment deposition per unit area decreases exponentially with marsh loss. Marsh erosion enlarges tidal prism values and enhances the tendency toward ebb dominance, thus decreasing the overall sediment availability of the system. Our findings highlight that marsh deterioration reduces the sediment stock in back-barrier basins and therefore compromises the resilience of salt marshes.
  3. Vermeij, Geerat J. (Ed.)
    Rapid warming and sea-level rise are predicted to be major driving forces in shaping coastal ecosystems and their services in the next century. Though forecasts of the multiple and complex effects of temperature and sea-level rise on ecological interactions suggest negative impacts on parasite diversity, the effect of long term climate change on parasite dynamics is complex and unresolved. Digenean trematodes are complex life cycle parasites that can induce characteristic traces on their bivalve hosts and hold potential to infer parasite host-dynamics through time and space. Previous work has demonstrated a consistent association between sea level rise and increasing prevalence of trematode traces, but a number of fundamental questions remain unanswered about this paleoecological proxy. Here we examine the relationships of host size, shape, and functional morphology with parasite prevalence and abundance, how parasites are distributed across hosts, and how all of these relationships vary through time, using the bivalve Chamelea gallina from a Holocene shallow marine succession in the Po coastal plain. Trematode prevalence increased and decreased in association with the transition from a wave-influenced estuarine system to a wave-dominated deltaic setting. Prevalence and abundance of trematode pits are associated with large host body size, reflecting ontogenetic accumulation ofmore »parasites, but temporal trends in median host size do not explain prevalence trends. Ongoing work will test the roles of temperature, salinity, and nutrient availability on trematode parasitism. Parasitized bivalves in one sample were shallower burrowers than their non-parasitized counterparts, suggesting that hosts of trematodes can be more susceptible to their predators, though the effect is ephemeral. Like in living parasite-host systems, trematode-induced malformations are strongly aggregated among hosts, wherein most host individuals harbor very few parasites while a few hosts have many. We interpret trace aggregation to support the assumption that traces are a reliable proxy for trematode parasitism in the fossil record.« less
  4. Hurricane Sandy, one of the largest Atlantic hurricanes on record, made landfall as an extratropical cyclone on the coast of New Jersey (29 October 2012) along a track almost perpendicular to the coast. Ten days later a northeaster caused heavy precipitation and elevated water levels along the coast. Two years of pre-storm monitoring and research in marshes of Barnegat Bay and the Delaware Estuary provided an opportunity to evaluate the impacts of Hurricane Sandy and the succeeding northeaster across the region. Peak water levels during Sandy ranged from 111 to 184 cm above the marsh surface in Barnegat Bay and 75 to 135 cm above the marsh surface in the Delaware Estuary. Despite widespread flooding and damage to coastal communities, the storm had modest and localized impacts on coastal marshes of New Jersey. Measurements made on the marsh platform illustrated localized responses to the storms including standing biomass removal, and changes in peak biomass the following summer. Marsh surface and elevation changes were variable within marshes and across the region. Localized elevation changes over the storm period were temporary and associated with subsurface processes. Over the long-term, there was no apparent impact of the 2012 storms, as elevations and regressionmore »slopes pre- and several months post-storm were not significant. Vegetation changes in the summer following the fall 2012 storms were also variable and localized within and among marshes. These results suggest that Hurricane Sandy and the succeeding northeaster did not have a widespread long-term impact on saline marshes in this region. Possible explanations are the dissipation of surge and wave energy from the barrier island in Barnegat Bay and the extreme water levels buffering the low-lying marsh surface from waves, winds, and currents, and carrying suspended loads past the short-statured marsh grasses to areas of taller vegetation and/or structure. These findings demonstrate that major storms that have substantial impacts on infrastructure and communities can have short-term localized effects on coastal marshes in the vicinity of the storm track.  « less
  5. Abstract A substantial body of research now exists demonstrating sensitivities of marine organisms to ocean acidification (OA) in laboratory settings. However, corresponding in situ observations of marine species or ecosystem changes that can be unequivocally attributed to anthropogenic OA are limited. Challenges remain in detecting and attributing OA effects in nature, in part because multiple environmental changes are co-occurring with OA, all of which have the potential to influence marine ecosystem responses. Furthermore, the change in ocean pH since the industrial revolution is small relative to the natural variability within many systems, making it difficult to detect, and in some cases, has yet to cross physiological thresholds. The small number of studies that clearly document OA impacts in nature cannot be interpreted as a lack of larger-scale attributable impacts at the present time or in the future but highlights the need for innovative research approaches and analyses. We summarize the general findings in four relatively well-studied marine groups (seagrasses, pteropods, oysters, and coral reefs) and integrate overarching themes to highlight the challenges involved in detecting and attributing the effects of OA in natural environments. We then discuss four potential strategies to better evaluate and attribute OA impacts on species andmore »ecosystems. First, we highlight the need for work quantifying the anthropogenic input of CO2 in coastal and open-ocean waters to understand how this increase in CO2 interacts with other physical and chemical factors to drive organismal conditions. Second, understanding OA-induced changes in population-level demography, potentially increased sensitivities in certain life stages, and how these effects scale to ecosystem-level processes (e.g. community metabolism) will improve our ability to attribute impacts to OA among co-varying parameters. Third, there is a great need to understand the potential modulation of OA impacts through the interplay of ecology and evolution (eco–evo dynamics). Lastly, further research efforts designed to detect, quantify, and project the effects of OA on marine organisms and ecosystems utilizing a comparative approach with long-term data sets will also provide critical information for informing the management of marine ecosystems.« less