skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mitigating the global expansion of harmful cyanobacterial blooms: Moving targets in a human- and climatically-altered world. Harmful Algae
Award ID(s):
1803697
PAR ID:
10225149
Author(s) / Creator(s):
Date Published:
Journal Name:
Harmful algae
Issue:
96
ISSN:
1878-1470
Page Range / eLocation ID:
101845
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Harmful fine-tuning attack poses serious safety concerns for large language models’ fine-tuning-as-a-service. While existing defenses have been proposed to mitigate the issue, their performances are still far away from satisfactory, and the root cause of the problem has not been fully recovered. To this end, we in this paper show that harmful perturbation over the model weights could be a probable cause of alignment-broken. In order to attenuate the negative impact of harmful perturbation, we propose an alignment-stage solution, dubbed Booster. Technically, along with the original alignment loss, we append a loss regularizer in the alignment stage’s optimization. The regularizer ensures that the model’s harmful loss reduction after the simulated harmful perturbation is attenuated, thereby mitigating the subsequent fine-tuning risk. Empirical results show that Booster can effectively reduce the harmful score of the fine-tuned models while maintaining the performance of downstream tasks. Our code is available at https://github.com/git-disl/Booster. 
    more » « less
  2. User authentication systems based on cardiovascular biosignals have gained prominence in recent years, as these signals are presumed to be difficult to forge. We challenge this assumption by showing that an observer who has access to one type of cardiac data --- such as a user's pulse waveform, readily obtainable from video and commercial smartwatches --- can design a spoofing attack strong enough to fool authentication systems based on other cardiovascular biosignals. We present BioForge, an approach that leverages a cycle-consistent generative adversarial network to synthesize realistic physiological signals for a given user without relying on simultaneously collected supervision data. We evaluate BioForge on multiple open-access datasets and an array of verification systems, many of which can be fooled over 50% of the time in 10 or fewer attempts. Notably, we are able to fool systems that rely not just on heart rate and peak locations but also on the morphology of the waveforms. We additionally showcase how BioForge can be used to spoof authentication systems from biosignal data extracted from video clips of a target user. Our work demonstrates that authentication systems should not rely on the secrecy of cardiovascular biosignals. 
    more » « less
  3. Modern SSDs achieve high throughput by utilizing multiple independent channels and chips in parallel. However, we find that excessive parallelism inadvertently amplifies the garbage collection (GC) overhead due to the larger unit of space reclamation. Based on this observation, we design PLAN, a novel SSD parallelism management and data placement scheme that allocates different levels of parallelism to different workloads with different needs to minimize the GC overhead. We demonstrate the effectiveness of PLAN by evaluating it against other state-of-the-art designs across various real-world workloads. PLAN reduces write amplification with comparable or better performance to the other designs that are always at full parallelism. 
    more » « less
  4. We argue that wear leveling in SSDs does more harm than good under modern settings where the endurance limit is in the hundreds. To support this claim, we evaluate existing wear leveling techniques and show that they exhibit anomalous behaviors and produce a high write amplification. These findings are consistent with a recent large-scale field study on the operational characteristics of SSDs. We discuss the option of forgoing wear leveling and instead adopting capacity variance in SSDs, and show that the capacity variance extends the lifetime of the SSD by up to 2.94×. 
    more » « less