Reinforcement learning (RL) has demonstrated its superiority in solving sequential decision-making problems. However, heavy dependence on immediate reward feedback impedes the wide application of RL. On the other hand, imitation learning (IL) tackles RL without relying on environmental supervision by leveraging external demonstrations. In practice, however, collecting sufficient expert demonstrations can be prohibitively expensive, yet the quality of demonstrations typically limits the performance of the learning policy. To address a practical scenario, in this work, we propose Self-Adaptive Imitation Learning (SAIL), which, provided with a few demonstrations from a sub-optimal teacher, can perform well in RL tasks with extremely delayed rewards, where the only reward feedback is trajectory-wise ranking. SAIL bridges the advantages of IL and RL by interactively exploiting the demonstrations to catch up with the teacher and exploring the environment to yield demonstrations that surpass the teacher. Extensive empirical results show that not only does SAIL significantly improve the sample efficiency, but it also leads to higher asymptotic performance across different continuous control tasks, compared with the state-of-the-art.
more »
« less
f-GAIL: Learning f-Divergence for Generative Adversarial Imitation Learning
Imitation learning (IL) aims to learn a policy from expert demonstrations that minimizes the discrepancy between the learner and expert behaviors. Various imitation learning algorithms have been proposed with different pre-determined divergences to quantify the discrepancy. This naturally gives rise to the following question: Given a set of expert demonstrations, which divergence can recover the expert policy more accurately with higher data efficiency? In this work, we propose f-GAIL – a new generative adversarial imitation learning model – that automatically learns a discrepancy measure from the f-divergence family as well as a policy capable of producing expert-like behaviors. Compared with IL baselines with various predefined divergence measures, f-GAIL learns better policies with higher data efficiency in six physics-based control tasks.
more »
« less
- PAR ID:
- 10225172
- Date Published:
- Journal Name:
- Advances in neural information processing systems
- ISSN:
- 1049-5258
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Interactive Imitation Learning (IIL) enables agents to acquire desired behaviors through human interventions, but existing methods often place heavy cognitive demands on human supervisors. To address this issue, we introduce the Adaptive Intervention Mechanism (AIM), a novel robot-gated IIL algorithm that learns an adaptive criterion for requesting human demonstrations. AIM leverages a proxy Q-function to model the human intervention rule, dynamically adjusting intervention requests based on the alignment between agent and expert actions. The proxy Q-function assigns high values when the agent deviates from expert behavior and gradually reduces these values as the agent improves, allowing the agent to assess real-time alignment and request assistance only when necessary. Expert-in-the-loop experiments demonstrate that AIM reduces expert monitoring effort by 40% compared to the uncertainty-based baseline Thrifty-DAgger, while improving learning efficiency. Moreover, AIM effectively identifies safety-critical states that warrant expert intervention, leading to higher-quality demonstrations and fewer overall expert data and environment interactions. Code and demo video are available at https://github.com/metadriverse/AIM.more » « less
-
Successful collaboration requires team members to stay aligned, especially in complex sequential tasks. Team members must dynamically coordinate which subtasks to perform and in what order. However, real-world constraints like partial observability and limited communication bandwidth often lead to suboptimal collaboration. Even among expert teams, the same task can be executed in multiple ways. To develop multi-agent systems and human-AI teams for such tasks, we are interested in data-driven learning of multimodal team behaviors. Multi-Agent Imitation Learning (MAIL) provides a promising framework for data-driven learning of team behavior from demonstrations, but existing methods struggle with heterogeneous demonstrations, as they assume that all demonstrations originate from a single team policy. Hence, in this work, we introduce DTIL: a hierarchical MAIL algorithm designed to learn multimodal team behaviors in complex sequential tasks. DTIL represents each team member with a hierarchical policy and learns these policies from heterogeneous team demonstrations in a factored manner. By employing a distribution-matching approach, DTIL mitigates compounding errors and scales effectively to long horizons and continuous state representations. Experimental results show that DTIL outperforms MAIL baselines and accurately models team behavior across a variety of collaborative scenarios.more » « less
-
Offline imitation learning (IL) refers to learning expert behavior solely from demonstrations, without any additional interaction with the environment. Despite significant advances in offline IL, existing techniques find it challenging to learn policies for long-horizon tasks and require significant re-training when task specifications change. Towards addressing these limitations, we present GO-DICE an offline IL technique for goal-conditioned long-horizon sequential tasks. GO-DICE discerns a hierarchy of sub-tasks from demonstrations and uses these to learn separate policies for sub-task transitions and action execution, respectively; this hierarchical policy learning facilitates long-horizon reasoning.Inspired by the expansive DICE-family of techniques, policy learning at both the levels transpires within the space of stationary distributions. Further, both policies are learnt with goal conditioning to minimize need for retraining when task goals change. Experimental results substantiate that GO-DICE outperforms recent baselines, as evidenced by a marked improvement in the completion rate of increasingly challenging pick-and-place Mujoco robotic tasks. GO-DICE is also capable of leveraging imperfect demonstration and partial task segmentation when available, both of which boost task performance relative to learning from expert demonstrations alone.more » « less
-
Long-horizon tasks in unstructured environments are notoriously challenging for robots because they require the prediction of extensive action plans with thousands of steps while adapting to ever-changing conditions by reasoning among multimodal sensing spaces. Humans can efficiently tackle such compound problems by breaking them down into easily reachable abstract sub-goals, significantly reducing complexity. Inspired by this ability, we explore how we can enable robots to acquire sub-goal formulation skills for long-horizon tasks and generalize them to novel situations and environments. To address these challenges, we propose the Zero-shot Abstract Sub-goal Framework (ZAS-F), which empowers robots to decompose overarching action plans into transferable abstract sub-goals, thereby providing zero-shot capability in new task conditions. ZAS-F is an imitation-learning-based method that efficiently learns a task policy from a few demonstrations. The learned policy extracts abstract features from multimodal and extensive temporal observations and subsequently uses these features to predict task-agnostic sub-goals by reasoning about their latent relations. We evaluated ZAS-F in radio frequency identification (RFID) inventory tasks across various dynamic environments, a typical long-horizon task requiring robots to handle unpredictable conditions, including unseen objects and structural layouts. Ourexperiments demonstrated that ZAS-F achieves a learning efficiency 30 times higher than previous methods, requiring only 8k demonstrations. Compared to prior approaches, ZAS-F achieves a 98.3% scanning accuracy while significantly reducing the training data requirement. Further, ZAS-F demonstrated strong generalization, maintaining a scan success rate of 99.4% in real-world deployment without additional finetuning. In long-term operations spanning 100 rooms, ZAS-F maintained consistent performance compared to short-term tasks, highlighting its robustness against compounding errors. These results establish ZAS-F as an efficient and adaptable solution for long-horizon robotic tasks in unstructured environments.more » « less
An official website of the United States government

