Diversity in behaviors is instrumental for robust team performance in many multiagent tasks which require agents to coordinate. Unfortunately, exhaustive search through the agents’ behavior spaces is often intractable. This paper introduces Behavior Exploration for Heterogeneous Teams (BEHT), a multi-level learning framework that enables agents to progressively explore regions of the behavior space that promote team coordination on diverse goals. By combining diversity search to maximize agent-specific rewards and evolutionary optimization to maximize the team-based fitness, our method effectively filters regions of the behavior space that are conducive to agent coordination. We demonstrate the diverse behaviors and synergies that are method allows agents to learn on a multiagent exploration problem.
more »
« less
This content will become publicly available on June 5, 2026
Hierarchical Imitation Learning of Team Behavior from Heterogeneous Demonstrations
Successful collaboration requires team members to stay aligned, especially in complex sequential tasks. Team members must dynamically coordinate which subtasks to perform and in what order. However, real-world constraints like partial observability and limited communication bandwidth often lead to suboptimal collaboration. Even among expert teams, the same task can be executed in multiple ways. To develop multi-agent systems and human-AI teams for such tasks, we are interested in data-driven learning of multimodal team behaviors. Multi-Agent Imitation Learning (MAIL) provides a promising framework for data-driven learning of team behavior from demonstrations, but existing methods struggle with heterogeneous demonstrations, as they assume that all demonstrations originate from a single team policy. Hence, in this work, we introduce DTIL: a hierarchical MAIL algorithm designed to learn multimodal team behaviors in complex sequential tasks. DTIL represents each team member with a hierarchical policy and learns these policies from heterogeneous team demonstrations in a factored manner. By employing a distribution-matching approach, DTIL mitigates compounding errors and scales effectively to long horizons and continuous state representations. Experimental results show that DTIL outperforms MAIL baselines and accurately models team behavior across a variety of collaborative scenarios.
more »
« less
- Award ID(s):
- 2205454
- PAR ID:
- 10615490
- Publisher / Repository:
- Proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS)
- Date Published:
- ISBN:
- 9798400714269
- Page Range / eLocation ID:
- 1886–1894
- Subject(s) / Keyword(s):
- Behavior Modeling Multi-Agent Imitation Learning Teamwork
- Format(s):
- Medium: X
- Location:
- Detroit, MI, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Multi-human multi-robot teams (MH-MR) obtain tremendous potential in tackling intricate and massive missions by merging distinct strengths and expertise of individual members. The inherent heterogeneity of these teams necessitates advanced initial task allocation (ITA) methods that align tasks with the intrinsic capabilities of team members from the outset. While existing reinforcement learning approaches show encouraging results, they might fall short in addressing the nuances of long-horizon ITA problems, particularly in settings with large-scale MH-MR teams or multifaceted tasks. To bridge this gap, we propose an attention-enhanced hierarchical reinforcement learning approach that decomposes the complex ITA problem into structured sub-problems, facilitating more efficient allocations. To bolster sub-policy learning, we introduce a hierarchical cross-attribute attention (HCA) mechanism, encouraging each sub-policy within the hierarchy to discern and leverage the specific nuances in the state space that are crucial for its respective decision-making phase. Through an extensive environmental surveillance case study, we demonstrate the benefits of our model and the HCA inside.more » « less
-
Teamwork is a set of interrelated reasoning, actions and behaviors of team members that facilitate common objectives. Teamwork theory and experiments have resulted in a set of states and processes for team effectiveness in both human-human and agent-agent teams. However, human-agent teaming is less well studied because it is so new and involves asymmetry in policy and intent not present in human teams. To optimize team performance in human-agent teaming, it is critical that agents infer human intent and adapt their polices for smooth coordination. Most literature in human-agent teaming builds agents referencing a learned human model. Though these agents are guaranteed to perform well with the learned model, they lay heavy assumptions on human policy such as optimality and consistency, which is unlikely in many real-world scenarios. In this paper, we propose a novel adaptive agent architecture in human-model-free setting on a two-player cooperative game, namely Team Space Fortress (TSF). Previous human-human team research have shown complementary policies in TSF game and diversity in human players’ skill, which encourages us to relax the assumptions on human policy. Therefore, we discard learning human models from human data, and instead use an adaptation strategy on a pre-trained library of exemplar policies composed of RL algorithms or rule-based methods with minimal assumptions of human behavior. The adaptation strategy relies on a novel similarity metric to infer human policy and then selects the most complementary policy in our library to maximize the team performance. The adaptive agent architecture can be deployed in real-time and generalize to any off-the-shelf static agents. We conducted human-agent experiments to evaluate the proposed adaptive agent framework, and demonstrated the suboptimality, diversity, and adaptability of human policies in human-agent teams.more » « less
-
Learning algebra concepts, particularly those involving functions, is crucial yet challenging in mathematics education. Research suggests that collaborative learning, where students work in small teams to solve math problems, can support conceptual learning. However, collaborative problem solving (CPS) is complex and requires students’ social and cognitive skills for success. This study investigates the impacts of guided facilitation on supporting CPS in mathematics tasks during small-team collaboration. Using epistemic network analysis and sequential pattern mining, we analyzed chat logs from student teams and human facilitators and compared the interactions in facilitated and unfacilitated teams. Results indicated that near-peer facilitation effectively promoted constructive behaviors like multiple turns of social negotiation, while reducing inappropriate communications. Different facilitation strategies, such as encouraging students to respond to each other or clarify their statements, elicited targeted CPS behaviors, possibly leading to improved team performance. Findings have practical implications for facilitating CPS in mathematics classrooms.more » « less
-
When faced with accomplishing a task, human experts exhibit intentional behavior. Their unique intents shape their plans and decisions, resulting in experts demonstrating diverse behaviors to accomplish the same task. Due to the uncertainties encountered in the real world and their bounded rationality, experts sometimes adjust their intents, which in turn influences their behaviors during task execution. This paper introduces IDIL, a novel imitation learning algorithm to mimic these diverse intent-driven behaviors of experts. Iteratively, our approach estimates expert intent from heterogeneous demonstrations and then uses it to learn an intent-aware model of their behavior. Unlike contemporary approaches, IDIL is capable of addressing sequential tasks with high-dimensional state representations, while sidestepping the complexities and drawbacks associated with adversarial training (a mainstay of related techniques). Our empirical results suggest that the models generated by IDIL either match or surpass those produced by recent imitation learning benchmarks in metrics of task performance. Moreover, as it creates a generative model, IDIL demonstrates superior performance in intent inference metrics, crucial for human-agent interactions, and aptly captures a broad spectrum of expert behaviors.more » « less
An official website of the United States government
