skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cycling-Net: A Deep Learning Approach to Predicting Cyclist Behaviors from Geo-Referenced Egocentric Video Data
Cycling, as a green transportation mode, provides an environmentally friendly transportation choice for short-distance traveling. However, cyclists are also getting involved in fatal accidents more frequently in recent years. Thus, understanding and modeling their road behaviors is crucial in helping improving road safety laws and infrastructures. Traditionally, people understand road user behavior using either purely spatial trajectory data, or videos from fixed surveillance camera through tracking or predicting their paths. However, these data only cover limited areas and do not provide information from the cyclist's field of view. In this paper, we take advantage of geo-referenced egocentric video data collected from the handlebar cameras of cyclists to learn how to predict their behaviors. This approach is technically more challenging, because both the observer and objects in the scene might be moving, and there are strong temporal dependencies in both the behaviors of cyclists and the video scenes. We propose Cycling-Net, a novel deep learning model that tracks different types of objects in consecutive scenes and learns the relationship between the movement of these objects and the behavior of the cyclist. Experiment results on a naturalistic trip dataset show the Cycling-Net is effective in behavior prediction and outperforms a baseline model.  more » « less
Award ID(s):
1942680 1952085 1831140
PAR ID:
10225180
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 28th International Conference on Advances in Geographic Information Systems
Page Range / eLocation ID:
337 to 346
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cycling as a mode of transportation has been recording an upward trend in both the U.S. and Europe. Unfortunately, the safety of cyclists has been a point of growing concern. Data from the National Highway Traffic Safety Administration (NHTSA) show that the crashes that occur during the events of motorists overtaking cyclists was one of the leading categories involving cyclists in fatal crashes. In support of the efforts to understand the driving behavior of drivers of motorized vehicles while overtaking cyclists, this research project is aimed at developing an algorithm to identify the overtaking events. Most existing quantitative studies on cycling safety leverage instrumented bicycles or vehicles with sensors for extracting naturalistic driving trajectories. Whereas we use data from a recent research that provides naturalistic driving trajectories of road users collected at select intersections in urban areas in Germany using drones equipped with cameras. Using these videos with a data frequency of 25 Hz, the authors of this study have output inD dataset. The inD dataset contains trajectories of road users that are captured in form of coordinates on a two-dimensional plane obtained from the ariel or bird's eye view of the road. Additionally, the data also captures velocity, acceleration, heading angles, dimensions of driver's vehicle etc. Overtaking can be thought of as four phases of approaching, steering away, passing, and returning. Using the inD dataset, we have developed an algorithm to identify events when a driver of motor vehicle overtakes a cyclist. This work fits into our broader goal to contribute to the body of knowledge for improving road safety of cyclists. The work is expected to provide inputs to governmental/ traffic authorities in aspects such as design of intersections and design of bicycle lanes by providing insights into overtaking events. 
    more » « less
  2. With improved portability and affordability, eye tracking devices have facilitated an expanding range of cycling experiments aimed at understanding cycling behavior and potential risks. Given the complexity of cyclists’ visual behavior and gaze measurements, we provide a comprehensive review with three key focuses: 1) the adoption and interpretation of various gaze metrics derived from cycling experiments, 2) a summary of the findings of those experiments, and 3) identifying areas for future research. A systematic review of three databases yielded thirty-five articles that met our inclusion criteria. Our review results show that cycling experiments with eye tracking allow analysis of the viewpoint of the cyclist and reactions to the built environment, road conditions, navigation behavior, and mental workload and/or stress levels. Our review suggests substantial variation in research objectives and the consequent selection of eye-tracking devices, experimental design, and which gaze metrics are used and interpreted. A variety of general gaze metrics and gaze measurements related to Areas of Interest (AOI) are applied to infer cyclists’ mental workload/stress levels and attention allocation respectively. The diversity of gaze metrics reported in the literature makes cross-study comparisons difficult. Areas for future research, especially potential integration with computer vision are also discussed. 
    more » « less
  3. Increasing cycling for transportation or recreation can boost health and reduce the environmental impacts of vehicles. However, news agencies' ideologies and reporting styles often influence public perception of cycling. For example, if news agencies overly report cycling accidents, it may make people perceive cyclists as "dangerous," reducing the number of cyclists who opt to cycle. Additionally, a decline in cycling can result in less government funding for safe infrastructure. In this paper, we develop a method for detecting the perceived perception of cyclists within news headlines. We introduce a new dataset called ``Bike Frames'' to accomplish this. The dataset consists of 31,480 news headlines and 1,500 annotations. Our focus is on analyzing 11,385 headlines from the United States. We also introduce the BikeFrame Chain-of-Code framework to predict cyclist perception, identify accident-related headlines, and determine fault. This framework uses pseudocode for precise logic and integrates news agency bias analysis for improved predictions over traditional chain-of-thought reasoning in large language models. Our method substantially outperforms other methods, and most importantly, we find that incorporating news bias information substantially impacts performance, improving the average F1 from .739 to .815. Finally, we perform a comprehensive case study on US-based news headlines, finding reporting differences between news agencies and cycling-specific websites as well as differences in reporting depending on the gender of cyclists. WARNING: This paper contains descriptions of accidents and death. 
    more » « less
  4. In this paper, we extend the dataset statistics, model benchmarks, and performance analysis for the recently published KABR dataset, an in situ dataset for ungulate behavior recognition using aerial footage from the Mpala Research Centre in Kenya. The dataset comprises video footage of reticulated giraffes (lat. Giraffa reticulata), Plains zebras (lat. Equus quagga), and Grévy’s zebras (lat. Equus grevyi) captured using a DJI Mavic 2S drone. It includes both spatiotemporal (i.e., mini-scenes) and behavior annotations provided by an expert behavioral ecologist. In total, KABR has more than 10 hours of annotated video. We extend the previous work in four key areas by: (i) providing comprehensive dataset statistics to reveal new insights into the data distribution across behavior classes and species; (ii) extending the set of existing benchmark models to include a new state-of-the-art transformer; (iii) investigating weight initialization strategies and exploring whether pretraining on human action recognition datasets is transferable to in situ animal behavior recognition directly (i.e., zero-shot) or as initialization for end-to-end model training; and (iv) performing a detailed statistical analysis of the performance of these models across species, behavior, and formally defined segments of the long-tailed distribution. The KABR dataset addresses the limitations of previous datasets sourced from controlled environments, offering a more authentic representation of natural animal behaviors. This work marks a significant advancement in the automatic analysis of wildlife behavior, leveraging drone technology to overcome traditional observational challenges and enabling a more nuanced understanding of animal interactions in their natural habitats. The dataset is available at https://kabrdata.xyz 
    more » « less
  5. Already known as densely populated areas with land use including housing, transportation, sanitation, utilities and communication, nowadays, cities tend to grow even bigger. Genuine road-user's types are emerging with further technological developments to come. As cities population size escalates, and roads getting congested, government agencies such as Department of Transportation (DOT) through the National Highway Traffic Safety Administration (NHTSA) are in pressing need to perfect their management systems with new efficient technologies. The challenge is to anticipate on never before seen problems, in their effort to save lives and implement sustainable cost-effective management systems. To make things yet more complicated and a bit daunting, self-driving car will be authorized in a close future in crowded major cities where roads are to be shared among pedestrians, cyclists, cars, and trucks. Roads sizes and traffic signaling will need to be constantly adapted accordingly. Counting and classifying turning vehicles and pedestrians at an intersection is an exhausting task and despite traffic monitoring systems use, human interaction is heavily required for counting. Our approach to resolve traffic intersection turning-vehicles counting is less invasive, requires no road dig up or costly installation. Live or recorded videos from already installed camera all over the cities can be used as well as any camera including cellphones. Our system is based on Neural Network and Deep Learning of object detection along computer vision technology and several methods and algorithms. Our approach will work on still images, recorded-videos, real-time live videos and will detect, classify, track and compute moving object velocity and direction using convolution neural network. Created based upon series of algorithms modeled after the human brain, our system uses NVIDIA Video cards with GPU, CUDA, OPENCV and mathematical vectors systems to perform. 
    more » « less