skip to main content

Title: The Pan-Arctic Continental Slope: Sharp Gradients of Physical Processes Affect Pelagic and Benthic Ecosystems
Continental slopes – steep regions between the shelf break and abyssal ocean – play key roles in the climatology and ecology of the Arctic Ocean. Here, through review and synthesis, we find that the narrow slope regions contribute to ecosystem functioning disproportionately to the size of the habitat area (∼6% of total Arctic Ocean area). Driven by inflows of sub-Arctic waters and steered by topography, boundary currents transport boreal properties and particle loads from the Atlantic and Pacific Oceans along-slope, thus creating both along and cross-slope connectivity gradients in water mass properties and biomass. Drainage of dense, saline shelf water and material within these, and contributions of river and meltwater also shape the characteristics of the slope domain. These and other properties led us to distinguish upper and lower slope domains; the upper slope (shelf break to ∼800 m) is characterized by stronger currents, warmer sub-surface temperatures, and higher biomass across several trophic levels (especially near inflow areas). In contrast, the lower slope has slower-moving currents, is cooler, and exhibits lower vertical carbon flux and biomass. Distinct zonation of zooplankton, benthic and fish communities result from these differences. Slopes display varying levels of system connectivity: (1) along-slope through property and material transport in boundary currents, (2) cross-slope through upwelling of warm and nutrient rich water and down-welling of dense water and organic rich matter, and (3) vertically through shear and mixing. Slope dynamics also generate separating functions through (1) along-slope and across-slope fronts concentrating biological activity, and (2) vertical gradients in the water column and at the seafloor that maintain distinct physical structure and community turnover. At the upper slope, climatic change is manifested in sea-ice retreat, increased heat and mass transport by sub-Arctic inflows, surface warming, and altered vertical stratification, while the lower slope has yet to display evidence of change. Model projections suggest that ongoing physical changes will enhance primary production at the upper slope, with suspected enhancing effects for consumers. We recommend Pan-Arctic monitoring efforts of slopes given that many signals of climate change appear there first and are then transmitted along the slope domain.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Ocean currents along the southeast Greenland coast play an important role in the climate system. They carry dense water over the Denmark Strait sill, freshwater from the Arctic and the Greenland Ice Sheet into the subpolar ocean, and warm Atlantic Ocean water into Greenland’s fjords, where it can interact with outlet glaciers. Observational evidence from moorings shows that the circulation in this region displays substantial subinertial variability (typically with periods of several days). For the dense water flowing over the Denmark Strait sill, this variability augments the time-mean transport. It has been suggested that the subinertial variability found in observations is associated with coastal trapped waves, whose properties depend on bathymetry, stratification, and the mean flow. Here, we use the output of a high-resolution realistic simulation to diagnose and characterize subinertial variability in sea surface height and velocity along the coast. The results show that the subinertial signals are coherent over hundreds of kilometers along the shelf. We find coastal trapped waves on the shelf and along the shelf break in two subinertial frequency bands—at periods of 1–3 and 5–18 days—that are consistent with a combination of mode-I waves and higher modes. Furthermore, we find that northeasterly barrier winds may trigger the 5–18-day shelf waves, whereas the 1–3-day variability is linked to high wind speeds over Sermilik Deep. 
    more » « less
  2. Mesoscale eddies are important to many aspects of the dynamics of the Arctic Ocean. Among others, they maintain the halocline and interact with the Atlantic Water circumpolar boundary current through lateral eddy fluxes and shelf-basin exchanges. Mesoscale eddies are also important for transporting biological material and for modifying sea ice distribution. Here, we review what is known about eddies and their impacts in the Arctic Ocean in the context of rapid climate change. Eddy kinetic energy (EKE) is a proxy for mesoscale variability in the ocean due to eddies. We present the first quantification of EKE from moored observations across the entire Arctic Ocean and compare those results to output from an eddy resolving numerical model. We show that EKE is largest in the northern Nordic Seas/Fram Strait and it is also elevated along the shelf break of the Arctic Circumpolar Boundary Current, especially in the Beaufort Sea. In the central basins, EKE is 100–1,000 times lower. Generally, EKE is stronger when sea ice concentration is low versus times of dense ice cover. As sea ice declines, we anticipate that areas in the Arctic Ocean where conditions typical of the North Atlantic and North Pacific prevail will increase. We conclude that the future Arctic Ocean will feature more energetic mesoscale variability. 
    more » « less
  3. Abstract

    Melting of ice shelves can energize a wide range of ocean currents, from three‐dimensional turbulence to relatively large‐scale boundary currents. Here, we conduct high‐resolution simulations of the western Amundsen Sea to show that submesoscale eddies are prevalent inside ice shelf cavities. The simulations indicate energetic submesoscale eddies at the top and bottom ocean boundary layers, regions with sharp topographic slopes and strong lateral buoyancy gradients. These eddies play a substantial role in the vertical and lateral (along‐isopycnal) heat advection toward the ice shelf base, enhancing the basal melting in all simulated cavities. In turn, the meltwater provides strong buoyancy gradients that energize the submesoscale variability, forming a positive loop that could affect the overall efficiency of heat exchange between the ocean and the ice shelf cavity. Our study implies that submesoscale‐induced enhancement of basal melting may be a ubiquitous process that needs to be parameterized in coarse‐resolution climate models.

    more » « less
  4. Abstract

    A high‐resolution regional ocean model together with moored hydrographic and velocity measurements is used to identify the pathways and mechanisms by which Pacific water, modified over the Chukchi shelf, crosses the shelf break into the Canada Basin. Most of the Pacific water flowing into the Arctic Ocean through Bering Strait enters the Canada Basin through Barrow Canyon. Strong advection allows the water to cross the shelf break and exit the shelf. Wind forcing plays little role in this process. Some of the outflowing water from Barrow Canyon flows to the east into the Beaufort Sea; however, approximately 0.4 to 0.5 Sv turns to the west forming the newly identified Chukchi Slope Current. This transport occurs at all times of year, channeling both summer and winter waters from the shelf to the Canada Basin. The model indicates that approximately 75% of this water was exposed to the mixed layer within the Chukchi Sea, while the remaining 25% was able to cross the shelf during the stratified summer before convection commences in late fall. We view the Sv of the Chukchi Slope Current as replacing Beaufort Gyre water that would have come from the east in the absence of the cross‐topography flow in Barrow Canyon. The weak eastward flow on the Beaufort slope is also consistent with the local disruption of the Beaufort Gyre by the Barrow Canyon outflow.

    more » « less
  5. Abstract Antarctic Bottom Water is primarily formed via overflows of dense shelf water (DSW) around the Antarctic continental margins. The dynamics of these overflows therefore influence the global abyssal stratification and circulation. Previous studies indicate that dense overflows can be unstable, energizing topographic Rossby waves (TRW) over the continental slope. However, it remains unclear how the wavelength and frequency of the TRWs are related to the properties of the overflowing DSW and other environmental conditions, and how the TRW properties influence the downslope transport of DSW. This study uses idealized high-resolution numerical simulations to investigate the dynamics of overflow-forced TRWs and the associated downslope transport of DSW. It is shown that the propagation of TRWs is constrained by the geostrophic along-slope flow speed of the DSW and by the dynamics of linear plane waves, allowing the wavelength and frequency of the waves to be predicted a priori. The rate of downslope DSW transport depends nonmonotonically on the slope steepness: steep slopes approximately suppress TRW formation, resulting in steady, frictionally dominated DSW descent. For slopes of intermediate steepness, the overflow becomes unstable and generates TRWs, accompanied by interfacial form stresses that drive DSW downslope relatively rapidly. For gentle slopes, the TRWs lead to the formation of coherent eddies that inhibit downslope DSW transport. These findings may explain the variable properties of TRWs observed in oceanic overflows, and they imply that the rate at which DSW descends to the abyssal ocean depends sensitively on the manifestation of TRWs and/or nonlinear eddies over the continental slope. 
    more » « less