skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cross-Shelf Exchange in Prograde Antarctic Troughs Driven by Offshore-Propagating Dense Water Eddies
Abstract This study examines the link between near-bottom outflows of dense water formed in Antarctic coastal polynyas and onshore intrusions of Circumpolar Deep Water (CDW) through prograde troughs cutting across the continental shelf. Numerical simulations show that the dense water outflow is primarily in the form of cyclonic eddies. The trough serves as a topographic guide that organizes the offshore-moving dense water eddies into a chain pattern. The offshore migration speed of the dense water eddies is similar to the velocity of the dense water offshore flow in the trough, which scaling analysis finds to be proportional to the reduced gravity of the dense water and the slope of the trough sidewalls and to be inversely proportional to the Coriolis parameter. Our model simulations indicate that, as these cyclonic dense water eddies move across the trough mouth into the deep ocean, they entrain CDW from offshore and carry CDW clockwise along their periphery into the trough. Subsequent cyclonic dense water eddies then entrain the intruding CDW further toward the coast along the trough. This process of recurring onshore entrainment of CDW by a topographically constrained chain of offshore-flowing dense water eddies is consistent with topographic hotspots of onshore intrusion of CDW around Antarctica identified by other studies. It can bring CDW from offshore to close to the coast and thus impact the heat flux into Antarctic coastal regions, affecting interactions among ocean, sea ice, and ice shelves. Significance StatementTroughs cutting across the Antarctic continental shelf are a major conduit for the transport of dense shelf water from coastal formation regions to the shelf break. This study describes a process in which clockwise-spinning eddies moving offshore in prograde troughs successively entrain filaments of relatively warm Circumpolar Deep Water from offshore across the entire shelf and into the coastal region. This eddy-induced transport provides a new understanding of the shelf edge exchange process identified in previous studies and a mechanism for further onshore intrusion of the warm Circumpolar Deep Water over parts of the Antarctic shelf. The resultant onshore heat flux could potentially bring a substantial amount of heat from offshore into the coastal region and thus affect ice–ocean interactions through melting sea ice and ice shelves.  more » « less
Award ID(s):
2147884
PAR ID:
10528960
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Physical Oceanography
Volume:
54
Issue:
8
ISSN:
0022-3670
Format(s):
Medium: X Size: p. 1613-1631
Size(s):
p. 1613-1631
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Over recent decades, the West Antarctic Ice Sheet has experienced rapid thinning of its floating ice shelves as well as grounding line retreat across its marine‐terminating glaciers. The transport of warm Modified Circumpolar Deep Water (MCDW) onto the continental shelf, extensively documented along the West Antarctic Peninsula (WAP), and in the Amundsen Sea, has been identified as the key process for inducing these changes. The Bellingshausen Sea sits between the Amundsen Sea and the northern part of the WAP, but its oceanic properties remain remarkably under‐studied compared to surrounding regions. Here, we present observations collected from a hydrographic survey of the Bellingshausen Sea continental shelf in austral summer 2019. Using a combination of ship‐based and glider‐based CTD and lowered ADCP observations, we show that submarine troughs provide topographically steered pathways for MCDW from the shelf break toward deep embayments and ultimately under floating ice shelves. Warm MCDW enters the continental shelf at the deepest part of the Belgica Trough and flows onshore along the eastern side of the trough. Modification of these shoreward‐flowing waters by glacial melt is estimated by calculating meltwater fractions using an optimal multiparameter analysis. Meltwater is found to be elevated at the western edge of both the Latady and Belgica troughs. Meltwater distributions, consistent with other diagnostics, suggest a recirculation in each trough with modified waters eventually flowing westward upon leaving the Belgica Trough. Our results show that the Bellingshausen Sea is a critical part of the larger West Antarctic circulation system, linking the WAP and the Amundsen Sea. 
    more » « less
  2. Abstract We analyze 15‐year of observational data and a 5‐year Southern Ocean model simulation to quantify the transformation rates of Circumpolar Deep Water (CDW) and the associated heat loss to the surface. This study finds that over the continental shelves of East Antarctica and the Weddell and Ross Seas, surface buoyancy fluxes transform ∼4.4 Sv of surface waters into CDW, providing a path for CDW to lose heat to the surface. In addition, ∼6.6 Sv of CDW are mixed with surface waters in the Weddell and Ross subpolar gyres. In contrast, enhanced stratification inhibits the outcropping of CDW isopycnals, reducing their transformation rates by a factor of ∼8 over the continental shelf and by a factor of ∼3 over the deeper ocean in the Amundsen and Bellingshausen Seas. The CDW retains its offshore warm properties as it intrudes over the continental shelves, resulting in elevated bottom temperatures there. This analysis demonstrates the importance of processes in subpolar gyres to erode CDW and to facilitate further transformation on the continental shelves, significantly reducing the heat able to access ice shelf fronts. This sheltering effect is strongest in the western Weddell Sea and tends to diminish toward the east, which helps explain the large zonal differences in continental‐shelf bottom temperatures and the melt rates of Antarctic ice shelves. 
    more » « less
  3. Abstract Basal melting of Antarctic ice shelves is primarily driven by heat delivery from warm Circumpolar Deep Water. Here we classify near-shelf water masses in an eddy-resolving numerical model of the Southern Ocean to develop a unified view of warm water intrusion onto the Antarctic continental shelf. We identify four regimes on seasonal timescales. In regime 1 (East Antarctica), heat intrusions are driven by easterly winds via Ekman dynamics. In regime 2 (West Antarctica), intrusion is primarily determined by the strength of a shelf-break undercurrent. In regime 3, the warm water cycle on the shelf is in antiphase with dense shelf water production (Adélie Coast). Finally, in regime 4 (Weddell and Ross seas), shelf-ward warm water inflow occurs along the western edge of canyons during periods of dense shelf water outflow. Our results advocate for a reformulation of the traditional annual-mean regime classification of the Antarctic continental shelf. 
    more » « less
  4. null (Ed.)
    Hydrographic data are analyzed for the broad continental shelf of the Bellingshausen Sea, which is host to a number of rapidly thinning ice shelves. The flow of warm Circumpolar Deep Water (CDW) onto the continental shelf is observed in the two major glacially carved troughs, the Belgica and Latady troughs. Using ship-based measurements of potential temperature, salinity, and dissolved oxygen, collected across several coast-to-coast transects over the Bellingshausen shelf in 2007, the velocity and circulation patterns are inferred based on geostrophic balance and further constrained by the tracer and mass budgets. Meltwater was observed at the surface and at intermediate depth toward the western side of the continental shelf, collocated with inferred outflows. The maximum conversion rate from the dense CDW to lighter water masses by mixing with glacial meltwater is estimated to be 0.37 ± 0.1 Sv in both depth and potential density spaces. This diapycnal overturning is comparable to previous estimates made in the neighboring Amundsen Sea, highlighting the overlooked importance of water mass modification and meltwater production associated with glacial melting in the Bellingshausen Sea. 
    more » « less
  5. Abstract Hydrographic data are analyzed for the broad continental shelf of the Bellingshausen Sea, which is host to a number of rapidly thinning ice shelves. The flow of warm Circumpolar Deep Water (CDW) onto the continental shelf is observed in the two major glacially carved troughs, the Belgica and Latady troughs. Using ship‐based measurements of potential temperature, salinity, and dissolved oxygen, collected across several coast‐to‐coast transects over the Bellingshausen shelf in 2007, the velocity and circulation patterns are inferred based on geostrophic balance and further constrained by the tracer and mass budgets. Meltwater was observed at the surface and at intermediate depth toward the western side of the continental shelf, collocated with inferred outflows. The maximum conversion rate from the dense CDW to lighter water masses by mixing with glacial meltwater is estimated to be 0.37 ± 0.1 Sv in both depth and potential density spaces. This diapycnal overturning is comparable to previous estimates made in the neighboring Amundsen Sea, highlighting the overlooked importance of water mass modification and meltwater production associated with glacial melting in the Bellingshausen Sea. 
    more » « less