skip to main content


Title: Nanoscale Textural and Chemical Evolution of Silica Fault Mirrors in the Wasatch Fault Damage Zone, Utah, USA
Abstract

High‐spatial resolution textural and geochemical data from thin slip surfaces in exhumed fault zones archive thermal and rheological signatures of past fault slip. A network of minor, glossy, iridescent silica fault mirrors (FMs) cut Paleoproterozoic gneiss in the Wasatch fault zone (WFZ), Utah. We report field to nanoscale observations from scanning electron microscopy, electron backscattered diffraction, and transmission electron microscopy with energy‐dispersive X‐ray spectroscopy of a silica FM to infer deformation mechanisms during FM development. The FM volume comprises a ∼40–90 μm‐thick basal layer of sintered, µm‐ to nm‐diameter silica particles with polygonal to anhedral morphologies, pervasive crystalline Ti‐bearing phases containing measurable N, and µm‐ to nm‐scale void spaces. Silica particles lack shape and crystallographic preferred orientation and some are predominantly amorphous with internal crystalline domains. The basal layer is overlain by a ∼10–130 nm‐thick, chemically heterogeneous, amorphous film at the FM interface. Mass balance calculations of Ti in the basal layer and host rock indicate the FM volume can be sourced from the underlying gneiss. Multiple textural and geochemical lines of evidence, including N substitution in Ti‐bearing phases, support temperature rise during deformation, associated amorphization of host gneiss, and creation of the FM volume. During thermal decay, interstitial anatase and titanite fully crystallized, silica textures capture their incipient crystallization, and some residual elements are solidified in the nanofilm. Our results support a mechanism of weakening and re‐strengthening of silica FM during fault slip and, together with data from adjacent hematite FMs, record shallow, ancient microseismicity in the WFZ.

 
more » « less
Award ID(s):
1654628
NSF-PAR ID:
10453364
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
22
Issue:
3
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Coseismic temperature rise activates fault dynamic weakening that promotes earthquake rupture propagation. The spatial scales over which peak temperatures vary on slip surfaces are challenging to identify in the rock record. We present microstructural observations and electron backscatter diffraction data from three small‐displacement hematite‐coated fault mirrors (FMs) in the Wasatch fault damage zone, Utah, to evaluate relations between fault properties, strain localization, temperature rise, and weakening mechanisms during FM development. Millimeter‐ to cm‐thick, matrix‐supported, hematite‐cemented breccia is cut by ∼25–200 μm‐thick, texturally heterogeneous veins that form the hematite FM volume (FMV). Grain morphologies and textures vary with FMV thickness over μm to mm lengthscales. Cataclasite grades to ultracataclasite where FMV thickness is greatest. Thinner FMVs and geometric asperities are characterized by particles with subgrains, serrated grain boundaries, and(or) low‐strain polygonal grains that increase in size with proximity to the FM surface. Comparison to prior hematite deformation experiments suggests FM temperatures broadly range from ≥400°C to ≥800–1100°C, compatible with observed coeval brittle and plastic deformation mechanisms, over sub‐mm scales on individual slip surfaces during seismic slip. We present a model of FM development by episodic hematite precipitation, fault reactivation, and strain localization, where the thickness of hematite veins controls the width of the deforming zones during subsequent fault slip, facilitating temperature rise and thermally activated weakening. Our data document intrasample coseismic temperatures, resultant deformation and dynamic weakening mechanisms, and the length scales over which these vary on slip surfaces.

     
    more » « less
  2. Abstract Evidence for coseismic temperature rise that induces dynamic weakening is challenging to directly observe and quantify in natural and experimental fault rocks. Hematite (U-Th)/He (hematite He) thermochronometry may serve as a fault-slip thermometer, sensitive to transient high temperatures associated with earthquakes. We test this hypothesis with hematite deformation experiments at seismic slip rates, using a rotary-shear geometry with an annular ring of silicon carbide (SiC) sliding against a specular hematite slab. Hematite is characterized before and after sliding via textural and hematite He analyses to quantify He loss over variable experimental conditions. Experiments yield slip surfaces localized in an ∼5–30-µm-thick layer of hematite gouge with <300-µm-diameter fault mirror (FM) zones made of sintered nanoparticles. Hematite He analyses of undeformed starting material are compared with those of FM and gouge run products from high-slip-velocity experiments, showing >71% ± 1% (1σ) and 18% ± 3% He loss, respectively. Documented He loss requires short-duration, high temperatures during slip. The spatial heterogeneity and enhanced He loss from FM zones are consistent with asperity flash heating (AFH). Asperities >200–300 µm in diameter, producing temperatures >900 °C for ∼1 ms, can explain observed He loss. Results provide new empirical evidence describing AFH and the role of coseismic temperature rise in FM formation. Hematite He thermochronometry can detect AFH and thus seismicity on natural FMs and other thin slip surfaces in the upper seismogenic zone of Earth’s crust. 
    more » « less
  3. Abstract Friction-generated heat and the subsequent thermal evolution control fault material properties and thus strength during the earthquake cycle. We document evidence for transient, nanoscale fault rheology on a high-gloss, light-reflective hematite fault mirror (FM). The FM cuts specularite with minor quartz from the Pleistocene El Laco Fe-ore deposit, northern Chile. Scanning and transmission electron microscopy data reveal that the FM volume comprises a <50-μm-thick zone of polygonal hematite nanocrystals with spherical silica inclusions, rhombohedral twins, no shape or crystallographic preferred orientation, decreasing grain size away from the FM surface, and FM surface magnetite nanoparticles and Fe2+ suboxides. Sub–5-nm-thick silica films encase hematite grains and connect to amorphous interstitial silica. Observations imply that coseismic shear heating (temperature >1000 °C) generated transiently amorphous, intermixed but immiscible, and rheologically weak Fe-oxide and silica. Hematite regrowth in a fault-perpendicular thermal gradient, sintering, twinning, and a topographic network of nanometer-scale ridges from crystals interlocking across the FM surface collectively restrengthened fault material. Results reveal how temperature-induced weakening preconditions fault healing. Nanoscale transformations may promote subsequent strain delocalization and development of off-fault damage. 
    more » « less
  4. Abstract

    The material properties and distribution of faults above the seismogenic zone promote or inhibit earthquake rupture propagation. We document the depths and mechanics of fault slip along the seismically active Hurricane fault, UT, with scanning and transmission electron microscopy and hematite (U‐Th)/He thermochronometry. Hematite occurs as mm‐scale, striated patches on a >10 m2thin, mirror‐like silica fault surface. Hematite textures include bulbous aggregates and cataclasite, overlain by crystalline Fe‐oxide nanorods and an amorphous silica layer at the slip interface. Textures reflect mechanical, fluid, and heat‐assisted amorphization of hematite and silica‐rich host rock that weaken the fault and promote rupture propagation. Hematite (U‐Th)/He dates document episodes of mineralization and fault slip between 0.65 and 0.36 Ma at ∼300 m depth. Data illustrate that some earthquake ruptures repeatedly propagate along localized slip surfaces in the shallow crust and provide structural and material property constraints for in models of fault slip.

     
    more » « less
  5. Kavanaugh, J. (Ed.)

    Quantifying shallow fault zone structure and characteristics is critical for accurately modeling the complex mechanical behavior of earthquakes as energy moves within faults from depth. We examine macro- to microstructures, mineralogy, and properties from drill core analyses of fault-related rocks in the steeply plunging ALT-B2 geotechnical borehole (total depth of 493 m) across the San Gabriel Fault zone, California. We use macroscopic drill core and outcrop-sample analyses, core-based damage estimates, optical microscopy, and X-ray diffraction mineralogic analyses to determine the fault zone structure, deformation mechanisms, and alteration patterns of exhumed deformed rocks formed in a section of the fault that slipped 5-12 million years ago, with evidence for some Quaternary slip. The fault consists of two principal slip zones composed of cohesive cataclasite, ultracataclasite, and intact clay-rich, highly foliated gouge within upper and lower damage zones 60 m and 50 m thick. The upper 6.5 m thick principal slip zone separates Mendenhall Gneiss and Josephine Granodiorite, and a lower 11 m thick principal slip is enclosed within the Josephine Granodiorite. Microstructures record overprinted brittle fractures, cohesive cataclasites, veins, sheared clay-rich rocks, and folded foliated and carbonate-rich horizons in the damage zones. Carbonate veins are common in the lower fault zone, and alteration and mineralization assemblages consist of clays, epidote, calcite, zeolites, and chloritic minerals. These data show that shallow portions of the fault experienced fluid-rock interactions that led to alteration, mineralization, and brittle and semi-brittle deformation that led to the formation of damage zones and narrow principal slip zones that are continuous down-dip and along strike.

     
    more » « less