We examine deformed crystalline bedrock in the upper parts of the active San Andreas and ancient San Gabriel Faults, southern California, to 1) determine the nature and origin of micro-scale composition and geochemistry of fault-related rocks, 2) constrain the extent of fluid-rock interactions, and 3) determine the interactions between alteration, mineralization, and deformation. We used drill cores from a 470 m long inclined borehole through the steep-dipping San Gabriel Fault and from seven inclined northeast-plunging boreholes across the San Andreas Fault zone to 150 m deep to show that narrow fault cores 10 cm to 5 m wide lie within 100s m wide damage zones. Petrographic, mineralogic, whole-rock geochemical analyses and synchrotron-based X-ray fluorescence mapping of drill core and thin sections of rocks from the damage zone and narrow principal slip surfaces reveal evidence for the development of early fracture networks, with iron and other transition element mineralization and alteration along the fractures. Alteration includes clay $$\pm$$ chlorite development, carbonate, and zeolite mineralization in matrix and fractures and the mobility of trace and transition elements. Carbonate-zeolite mineralization filled fractures and are associated with element mobility through the crystalline rocks. Textural evidence for repeated shearing, alteration, vein formation, brittle deformation, fault slip, pressure solution, and faulted rock re-lithification indicates significant hydrothermal alteration occurred during shallow-level deformation in the fault zones. The rock assemblages show that hydrothermal conditions in active faults develop at very shallow levels where seismic energy, heat, and fluids are focused.
more »
« less
Shallow Composition and Structure of the Upper Part of the Exhumed San Gabriel Fault, California: Implications for Fault Processes
Quantifying shallow fault zone structure and characteristics is critical for accurately modeling the complex mechanical behavior of earthquakes as energy moves within faults from depth. We examine macro- to microstructures, mineralogy, and properties from drill core analyses of fault-related rocks in the steeply plunging ALT-B2 geotechnical borehole (total depth of 493 m) across the San Gabriel Fault zone, California. We use macroscopic drill core and outcrop-sample analyses, core-based damage estimates, optical microscopy, and X-ray diffraction mineralogic analyses to determine the fault zone structure, deformation mechanisms, and alteration patterns of exhumed deformed rocks formed in a section of the fault that slipped 5-12 million years ago, with evidence for some Quaternary slip. The fault consists of two principal slip zones composed of cohesive cataclasite, ultracataclasite, and intact clay-rich, highly foliated gouge within upper and lower damage zones 60 m and 50 m thick. The upper 6.5 m thick principal slip zone separates Mendenhall Gneiss and Josephine Granodiorite, and a lower 11 m thick principal slip is enclosed within the Josephine Granodiorite. Microstructures record overprinted brittle fractures, cohesive cataclasites, veins, sheared clay-rich rocks, and folded foliated and carbonate-rich horizons in the damage zones. Carbonate veins are common in the lower fault zone, and alteration and mineralization assemblages consist of clays, epidote, calcite, zeolites, and chloritic minerals. These data show that shallow portions of the fault experienced fluid-rock interactions that led to alteration, mineralization, and brittle and semi-brittle deformation that led to the formation of damage zones and narrow principal slip zones that are continuous down-dip and along strike.
more »
« less
- Award ID(s):
- 1824852
- PAR ID:
- 10497578
- Editor(s):
- Kavanaugh, J.
- Publisher / Repository:
- Tektonika
- Date Published:
- Journal Name:
- Tektonika
- Volume:
- 1
- Issue:
- 2
- ISSN:
- 2976-548X
- Subject(s) / Keyword(s):
- Faults faulting geochemistry slip-localization damage zone core
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Coseismic temperature rise activates fault dynamic weakening that promotes earthquake rupture propagation. The spatial scales over which peak temperatures vary on slip surfaces are challenging to identify in the rock record. We present microstructural observations and electron backscatter diffraction data from three small‐displacement hematite‐coated fault mirrors (FMs) in the Wasatch fault damage zone, Utah, to evaluate relations between fault properties, strain localization, temperature rise, and weakening mechanisms during FM development. Millimeter‐ to cm‐thick, matrix‐supported, hematite‐cemented breccia is cut by ∼25–200 μm‐thick, texturally heterogeneous veins that form the hematite FM volume (FMV). Grain morphologies and textures vary with FMV thickness over μm to mm lengthscales. Cataclasite grades to ultracataclasite where FMV thickness is greatest. Thinner FMVs and geometric asperities are characterized by particles with subgrains, serrated grain boundaries, and(or) low‐strain polygonal grains that increase in size with proximity to the FM surface. Comparison to prior hematite deformation experiments suggests FM temperatures broadly range from ≥400°C to ≥800–1100°C, compatible with observed coeval brittle and plastic deformation mechanisms, over sub‐mm scales on individual slip surfaces during seismic slip. We present a model of FM development by episodic hematite precipitation, fault reactivation, and strain localization, where the thickness of hematite veins controls the width of the deforming zones during subsequent fault slip, facilitating temperature rise and thermally activated weakening. Our data document intrasample coseismic temperatures, resultant deformation and dynamic weakening mechanisms, and the length scales over which these vary on slip surfaces.more » « less
-
Abstract Slow slip is part of the earthquake cycle, but the processes controlling this phenomenon in space and time are poorly constrained. Hematite, common in continental fault zones, exhibits unique textures and (U-Th)/He thermochronometry data patterns reflecting different slip rates. We investigated networks of small hematite-coated slip surfaces in basement fault damage of exhumed strike-slip faults that connect to the southern San Andreas fault in a flower structure in the Mecca Hills, California, USA. Scanning electron microscopy shows these millimeter-thick surfaces exhibit basal hematite injection veins and layered veinlets comprising nanoscale, high-aspect-ratio hematite plates akin to phyllosilicates. Combined microstructural and hematite (U-Th)/He data (n = 64 new, 24 published individual analyses) record hematite mineralization events ca. 0.8 Ma to 0.4 Ma at <1.5 km depth. We suggest these hematite faults formed via fluid overpressure, and then hematite localized repeated subseismic slip, creating zones of shallow off-fault damage as far as 4 km orthogonal to the trace of the southern San Andreas fault. Distributed hematite slip surfaces develop by, and then accommodate, transient slow slip, potentially dampening or distributing earthquake energy in shallow continental faults.more » « less
-
Zuun Mod is a porphyry-type Mo-Cu deposit located in the Edren terrane in Southwest Mongolia. The deposit has estimated resources of 218 Mt with an average Mo grade of 0.057% and Cu grade of 0.069%, and significant amounts of Re. The deposit is characterized by multiple pulses of magmatism and exsolution of magmatic ore fluids and associated alteration and mineralization. The timing of these events and the tectonic environment were unconstrained, and the deposit’s origin remains controversial. Based on drill core and field examinations, four lithological units of the Bayanbulag intrusive complex are identified in the deposit area including quartz syenite, quartz monzonite, granodiorite, and granite. The majority of Mo mineralization at Zuun Mod occurs in sheeted and stockwork quartz veins that crosscut units of the Bayanbulag complex as well as disseminations within altered granitoids wherein the mineralized quartz veins occur with potassic and phyllic alteration selvages. Zircon U-Pb age dating for quartz monzonite and granodiorite defined the timing of magmatic events at 305.3 ± 3.6 Ma and 301.8 ± 2.7 Ma, respectively. Molybdenite Re-Os geochronology on grains from a quartz vein with potassic alteration selvage determined the age of Mo mineralization at 297 ± 4.8 Ma. Lithogeochemical data of intrusive units suggest the granitoid rocks show calc-alkaline to high-K calc-alkaline, I-type, and metaluminous to slightly peraluminous affinities that formed in a post-collisional setting and were likely sourced from subduction-modified lithosphere. Lithogeochemical signatures and the tectonic environment classify Zuun Mod into neither Climax nor Endako-types, but as a Mo-rich porphyry Cu deposit.more » « less
-
Abstract Mature faults with large cumulative slip often separate rocks with dissimilar elastic properties and show asymmetric damage distribution. Elastic contrast across such bimaterial faults can significantly modify various aspects of earthquake rupture dynamics, including normal stress variations, rupture propagation direction, distribution of ground motions, and evolution of off‐fault damage. Thus, analyzing elastic contrasts of bimaterial faults is important for understanding earthquake physics and related hazard potential. The effect of elastic contrast between isotropic materials on rupture dynamics is relatively well studied. However, most fault rocks are elastically anisotropic, and little is known about how the anisotropy affects rupture dynamics. We examine microstructures of the Sandhill Corner shear zone, which separates quartzofeldspathic rock and micaceous schist with wider and narrower damage zones, respectively. This shear zone is part of the Norumbega fault system, a Paleozoic, large‐displacement, seismogenic, strike‐slip fault system exhumed from middle crustal depths. We calculate elastic properties and seismic wave speeds of elastically anisotropic rocks from each unit having different proportions of mica grains aligned sub‐parallel to the fault. Our findings show that the horizontally polarized shear wave propagating parallel to the bimaterial fault (with fault‐normal particle motion) is the slowest owing to the fault‐normal compliance and therefore may be important in determining the elastic contrast that affects rupture dynamics in anisotropic media. Following results from subshear rupture propagation models in isotropic media, our results are consistent with ruptures preferentially propagated in the slip direction of the schist, which has the slower horizontal shear wave and larger fault‐normal compliance.more » « less
An official website of the United States government

