skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: TOI-257b (HD 19916b): a warm sub-saturn orbiting an evolved F-type star
ABSTRACT We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA’s Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the Minerva-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of MP = 0.138 ± 0.023 $$\rm {M_J}$$ (43.9 ± 7.3 $$\, M_{\rm \oplus}$$), a radius of RP = 0.639 ± 0.013 $$\rm {R_J}$$ (7.16 ± 0.15 $$\, \mathrm{ R}_{\rm \oplus}$$), bulk density of $$0.65^{+0.12}_{-0.11}$$ (cgs), and period $$18.38818^{+0.00085}_{-0.00084}$$ $$\rm {days}$$. TOI-257b orbits a bright (V = 7.612 mag) somewhat evolved late F-type star with M* = 1.390 ± 0.046 $$\rm {M_{sun}}$$, R* = 1.888 ± 0.033 $$\rm {R_{sun}}$$, Teff = 6075 ± 90 $$\rm {K}$$, and vsin i = 11.3 ± 0.5 km s−1. Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a ∼71 day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars (∼100) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems.  more » « less
Award ID(s):
2006285 1717000
PAR ID:
10225239
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
502
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
3704 to 3722
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We report on the discovery and validation of TOI 813 b (TIC 55525572 b), a transiting exoplanet identified by citizen scientists in data from NASA’s Transiting Exoplanet Survey Satellite (TESS) and the first planet discovered by the Planet Hunters TESS project. The host star is a bright (V = 10.3 mag) subgiant ($$R_\star =1.94\, R_\odot$$, $$M_\star =1.32\, M_\odot$$). It was observed almost continuously by TESS during its first year of operations, during which time four individual transit events were detected. The candidate passed all the standard light curve-based vetting checks, and ground-based follow-up spectroscopy and speckle imaging enabled us to place an upper limit of $$2\, M_{\rm Jup}$$ (99 per cent confidence) on the mass of the companion, and to statistically validate its planetary nature. Detailed modelling of the transits yields a period of $$83.8911 _{ - 0.0031 } ^ { + 0.0027 }$$ d, a planet radius of 6.71 ± 0.38 R⊕ and a semimajor axis of $$0.423 _{ - 0.037 } ^ { + 0.031 }$$ AU. The planet’s orbital period combined with the evolved nature of the host star places this object in a relatively underexplored region of parameter space. We estimate that TOI 813 b induces a reflex motion in its host star with a semi-amplitude of ∼6 m s−1, making this a promising system to measure the mass of a relatively long-period transiting planet. 
    more » « less
  2. Abstract We present the discovery of TOI 762 A b and TIC 46432937 b, two giant planets transiting M-dwarf stars. Transits of both systems were first detected from observations by the NASA TESS mission, and the transiting objects are confirmed as planets through high-precision radial velocity observations carried out with Very Large Telescope/ESPRESSO. TOI 762 A b is a warm sub-Saturn with a mass of 0.251 ± 0.042MJ, a radius of 0.744 ± 0.017RJ, and an orbital period of 3.4717 days. It transits a mid-M-dwarf star with a mass of 0.442 ± 0.025Mand a radius of 0.4250 ± 0.0091R. The star TOI 762 A has a resolved binary star companion, TOI 762 B, that is separated from TOI 762 A by 3.″2 (∼319 au) and has an estimated mass of 0.227 ± 0.010M. The planet TIC 46432937 b is a warm super-Jupiter with a mass of 3.20 ± 0.11MJand radius of 1.188 ± 0.030RJ. The planet’s orbital period isP= 1.4404 days, and it undergoes grazing transits of its early M-dwarf host star, which has a mass of 0.563 ± 0.029Mand a radius of 0.5299 ± 0.0091R. TIC 46432937 b is one of the highest-mass planets found to date transiting an M-dwarf star. TIC 46432937 b is also a promising target for atmospheric observations, having the highest transmission spectroscopy metric or emission spectroscopy metric value of any known warm super-Jupiter (mass greater than 3.0MJ, equilibrium temperature below 1000 K). 
    more » « less
  3. Abstract We present the validation of a transiting low-density exoplanet orbiting the M2.5 dwarf TOI 620 discovered by the NASA Transiting Exoplanet Survey Satellite (TESS) mission. We utilize photometric data from both TESS and ground-based follow-up observations to validate the ephemerides of the 5.09 day transiting signal and vet false-positive scenarios. High-contrast imaging data are used to resolve the stellar host and exclude stellar companions at separations ≳0.″2. We obtain follow-up spectroscopy and corresponding precise radial velocities (RVs) with multiple precision radial velocity (PRV) spectrographs to confirm the planetary nature of the transiting exoplanet. We calculate a 5σupper limit ofMP< 7.1MandρP< 0.74 g cm−3, and we identify a nontransiting 17.7 day candidate. We also find evidence for a substellar (1–20MJ) companion with a projected separation ≲20 au from a combined analysis of Gaia, adaptive optics imaging, and RVs. With the discovery of this outer companion, we carry out a detailed exploration of the possibilities that TOI 620 b might instead be a circum-secondary planet or a pair of eclipsing binary stars orbiting the host in a hierarchical triple system. We find, under scrutiny, that we can exclude both of these scenarios from the multiwavelength transit photometry, thus validating TOI 620 b as a low-density exoplanet transiting the central star in this system. The low density of TOI 620 b makes it one of the most amenable exoplanets for atmospheric characterization, such as with the James Webb Space Telescope and Ariel, validated or confirmed by the TESS mission to date. 
    more » « less
  4. Abstract Exoplanet discoveries have revealed a dramatic diversity of planet sizes across a vast array of orbital architectures. Sub-Neptunes are of particular interest; due to their absence in our own solar system, we rely on demographics of exoplanets to better understand their bulk composition and formation scenarios. Here, we present the discovery and characterization of TOI-1437 b, a sub-Neptune with a 18.84 day orbit around a near-solar analog (M= 1.10 ± 0.10M,R=1.17 ± 0.12R). The planet was detected using photometric data from the Transiting Exoplanet Survey Satellite (TESS) mission and radial velocity (RV) follow-up observations were carried out as a part of the TESS-Keck Survey using both the HIRES instrument at Keck Observatory and the Levy Spectrograph on the Automated Planet Finder telescope. A combined analysis of these data reveal a planet radius ofRp= 2.24 ± 0.23Rand a mass measurement ofMp= 9.6 ± 3.9M). TOI-1437 b is one of few (∼50) known transiting sub-Neptunes orbiting a solar-mass star that has a RV mass measurement. As the formation pathway of these worlds remains an unanswered question, the precise mass characterization of TOI-1437 b may provide further insight into this class of planet. 
    more » « less
  5. Despite the thousands of planets in orbit around stars known to date, the mechanisms of planetary formation, migration, and atmospheric loss remain unresolved. In this work, we confirm the planetary nature of a young Saturn-size planet transiting a solar-type star every 8.03 d, TOI-1135 b. The age of the parent star is estimated to be in the interval of 125-1000 Myr based on various activity and age indicators, including its stellar rotation period of 5.13 ± 0.27 days and the intensity of photospheric lithium. We obtained follow-up photometry and spectroscopy, including precise radial velocity measurements using the CARMENES spectrograph, which together with the TESS data allowed us to fully characterise the parent star and its planet. As expected for its youth, the star is rather active and shows strong photometric and spectroscopic variability correlating with its rotation period. We modelled the stellar variability using Gaussian process regression. We measured the planetary radius at 9.02 ± 0.23R(0.81 ± 0.02RJup) and determined a 3σupper limit of < 51.4M(< 0.16MJup) on the planetary mass by adopting a circular orbit. Our results indicate that TOI-1135 b is an inflated planet less massive than Saturn or Jupiter but with a similar radius, which could be in the process of losing its atmosphere by photoevaporation. This new young planet occupies a region of the mass-radius diagram where older planets are scarse, and it could be very helpful to understanding the lower frequency of planets with sizes between Neptune and Saturn. 
    more » « less