skip to main content

Title: Breeding transients in capture–recapture modeling and their consequences for local population dynamics
Abstract Standard procedures for capture–mark–recapture modelling (CMR) for the study of animal demography include running goodness-of-fit tests on a general starting model. A frequent reason for poor model fit is heterogeneity in local survival among individuals captured for the first time and those already captured or seen on previous occasions. This deviation is technically termed a transience effect. In specific cases, simple, uni-state CMR modeling showing transients may allow researchers to assess the role of these transients on population dynamics. Transient individuals nearly always have a lower local survival probability, which may appear for a number of reasons. In most cases, transients arise due to permanent dispersal, higher mortality, or a combination of both. In the case of higher mortality, transients may be symptomatic of a cost of first reproduction. A few studies working at large spatial scales actually show that transients more often correspond to survival costs of first reproduction rather than to permanent dispersal, bolstering the interpretation of transience as a measure of costs of reproduction, since initial detections are often associated with first breeding attempts. Regardless of their cause, the loss of transients from a local population should lower population growth rate. We review almost 1000 papers more » using CMR modeling and find that almost 40% of studies fitting the searching criteria (N = 115) detected transients. Nevertheless, few researchers have considered the ecological or evolutionary meaning of the transient phenomenon. Only three studies from the reviewed papers considered transients to be a cost of first reproduction. We also analyze a long-term individual monitoring dataset (1988–2012) on a long-lived bird to quantify transients, and we use a life table response experiment (LTRE) to measure the consequences of transients at a population level. As expected, population growth rate decreased when the environment became harsher while the proportion of transients increased. LTRE analysis showed that population growth can be substantially affected by changes in traits that are variable under environmental stochasticity and deterministic perturbations, such as recruitment, fecundity of experienced individuals, and transient probabilities. This occurred even though sensitivities and elasticities of these parameters were much lower than those for adult survival. The proportion of transients also increased with the strength of density-dependence. These results have implications for ecological and evolutionary studies and may stimulate other researchers to explore the ecological processes behind the occurrence of transients in capture–recapture studies. In population models, the inclusion of a specific state for transients may help to make more reliable predictions for endangered and harvested species. « less
Authors:
;
Award ID(s):
1753954
Publication Date:
NSF-PAR ID:
10225242
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Sponsoring Org:
National Science Foundation
More Like this
  1. The global movement of pathogens is altering populations and communities through a variety of direct and indirect ecological pathways. The direct effect of a pathogen on a host is reduced survival, which can lead to decreased population densities. However, theory also suggests that increased mortality can lead to no change or even increases in the density of the host. This paradoxical result can occur in a regulated population when the pathogen’s negative effect on survival is countered by increased reproduction at the lower density. Here, we analyze data from a long-term capture–mark–recapture experiment of Trinidadian guppies (Poecilia reticulata) that were recently infected with a nematode parasite (Camallanus cotti). By comparing the newly infected population with a control population that was not infected, we show that decreases in the density of the infected guppy population were transient. The guppy population compensated for the decreased survival by a density-dependent increase in recruitment of new individuals into the population, without any change in the underlying recruitment function. Increased recruitment was related to an increase in the somatic growth of uninfected fish. Twenty months into the new invasion, the population had fully recovered to preinvasion densities even though the prevalence of infection of fishmore »in the population remained high (72%). These results show that density-mediated indirect effects of novel parasites can be positive, not negative, which makes it difficult to extrapolate to how pathogens will affect species interactions in communities. We discuss possible hypotheses for the rapid recovery.

    « less
  2. Abstract

    The fitness consequences of cooperation can vary across an organism’s lifespan. For non-kin groups, especially, social advantages must balance intrinsic costs of cooperating with non-relatives. In this study, we asked how challenging life history stages can promote stable, long-term alliances among unrelated ant queens. We reared single- and multi-queen colonies of the primary polygynous harvester ant,Pogonomyrmex californicus, from founding through the first ten months of colony growth, when groups face high mortality risks. We found that colonies founded by multiple, unrelated queens experienced significant survival and growth advantages that outlasted the colony founding period. Multi-queen colonies experienced lower mortality than single-queen colonies, and queens in groups experienced lower mortality than solitary queens. Further, multi-queen colonies produced workers at a faster rate than did single-queen colonies, even while experiencing lower per-queen worker production costs. Additionally, we characterized ontogenetic changes in the organization of labor, and observed increasing and decreasing task performance diversity by workers and queens, respectively, as colonies grew. This dynamic task allocation likely reflects a response to the changing role of queens as they are increasingly able to delegate risky and costly tasks to an expanding workforce. Faster worker production in multi-queen colonies may beneficially accelerate this behavioralmore »transition from a vulnerable parent–offspring group to a stable, growing colony. These combined benefits of cooperation may facilitate the retention of multiple unrelated queens in mature colonies despite direct fitness costs, providing insight into the evolutionary drivers of stable associations between unrelated individuals.

    « less
  3. Abstract

    Larger animals studied during ontogeny, across populations, or across species, usually have lower mass-specific metabolic rates than smaller animals (hypometric scaling). This pattern is usually observed regardless of physiological state (e.g., basal, resting, field, and maximally active). The scaling of metabolism is usually highly correlated with the scaling of many life-history traits, behaviors, physiological variables, and cellular/molecular properties, making determination of the causation of this pattern challenging. For across-species comparisons of resting and locomoting animals (but less so for across populations or during ontogeny), the mechanisms at the physiological and cellular level are becoming clear. Lower mass-specific metabolic rates of larger species at rest are due to (a) lower contents of expensive tissues (brains, liver, and kidneys), and (b) slower ion leak across membranes at least partially due to membrane composition, with lower ion pump ATPase activities. Lower mass-specific costs of larger species during locomotion are due to lower costs for lower-frequency muscle activity, with slower myosin and Ca++ ATPase activities, and likely more elastic energy storage. The evolutionary explanation(s) for hypometric scaling remain(s) highly controversial. One subset of evolutionary hypotheses relies on constraints on larger animals due to changes in geometry with size; for example, lower surface-to-volume ratiosmore »of exchange surfaces may constrain nutrient or heat exchange, or lower cross-sectional areas of muscles and tendons relative to body mass ratios would make larger animals more fragile without compensation. Another subset of hypotheses suggests that hypometric scaling arises from biotic interactions and correlated selection, with larger animals experiencing less selection for mass-specific growth or neurolocomotor performance. An additional third type of explanation comes from population genetics. Larger animals with their lower effective population sizes and subsequent less effective selection relative to drift may have more deleterious mutations, reducing maximal performance and metabolic rates. Resolving the evolutionary explanation for the hypometric scaling of metabolism and associated variables is a major challenge for organismal and evolutionary biology. To aid progress, we identify some variation in terminology use that has impeded cross-field conversations on scaling. We also suggest that promising directions for the field to move forward include (1) studies examining the linkages between ontogenetic, population-level, and cross-species allometries; (2) studies linking scaling to ecological or phylogenetic context; (3) studies that consider multiple, possibly interacting hypotheses; and (4) obtaining better field data for metabolic rates and the life history correlates of metabolic rate such as lifespan, growth rate, and reproduction.

    « less
  4. Abstract The age of an animal, determined by time (chronological age) as well as genetic and environmental factors (biological age), influences the likelihood of mortality and reproduction and thus the animal’s contribution to population growth. For many long-lived species, such as bats, a lack of external and morphological indicators has made determining age a challenge, leading researchers to examine genetic markers of age for application to demographic studies. One widely studied biomarker of age is telomere length, which has been related both to chronological and biological age across taxa, but only recently has begun to be studied in bats. We assessed telomere length from the DNA of known-age and minimum known-age individuals of two bat species using a quantitative PCR assay. We determined that telomere length was quadratically related to chronological age in big brown bats (Eptesicus fuscus), although it had little predictive power for accurate age determination of unknown-age individuals. The relationship was different in little brown bats (Myotis lucifugus), where telomere length instead was correlated with biological age, apparently due to infection and wing damage associated with white-nose syndrome. Furthermore, we showed that wing biopsies currently are a better tissue source for studying telomere length in bats thanmore »guano and buccal swabs; the results from the latter group were more variable and potentially influenced by storage time. Refinement of collection and assessment methods for different non-lethally collected tissues will be important for longitudinal sampling to better understand telomere dynamics in these long-lived species. Although further work is needed to develop a biomarker capable of determining chronological age in bats, our results suggest that biological age, as reflected in telomere length, may be influenced by extrinsic stressors such as disease.« less
  5. Abstract

    Virulence, the degree to which a pathogen harms its host, is an important but poorly understood aspect of host-pathogen interactions. Virulence is not static, instead depending on ecological context and potentially evolving rapidly. For instance, at the start of an epidemic, when susceptible hosts are plentiful, pathogens may evolve increased virulence if this maximizes their intrinsic growth rate. However, if host density declines during an epidemic, theory predicts evolution of reduced virulence. Although well-studied theoretically, there is still little empirical evidence for virulence evolution in epidemics, especially in natural settings with native host and pathogen species. Here, we used a combination of field observations and lab assays in theDaphnia-Pasteuriamodel system to look for evidence of virulence evolution in nature. We monitored a large, naturally occurring outbreak ofPasteuria ramosainDaphnia dentifera, where infection prevalence peaked at ~ 40% of the population infected and host density declined precipitously during the outbreak. In controlled infections in the lab, lifespan and reproduction of infected hosts was lower than that of unexposed control hosts and of hosts that were exposed but not infected. We did not detect any significant changes in host resistance or parasite infectivity, nor did we find evidence for shifts in parasite virulencemore »(quantified by host lifespan and number of clutches produced by hosts). However, over the epidemic, the parasite evolved to produce significantly fewer spores in infected hosts. While this finding was unexpected, it might reflect previously quantified tradeoffs: parasites in high mortality (e.g., high predation) environments shift from vegetative growth to spore production sooner in infections, reducing spore yield. Future studies that track evolution of parasite spore yield in more populations, and that link those changes with genetic changes and with predation rates, will yield better insight into the drivers of parasite evolution in the wild.

    « less