skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Power Side-Channel Attacks on BNN Accelerators in Remote FPGAs
To lower cost and increase the utilization of Cloud Field-Programmable Gate Arrays (FPGAs), researchers have recently been exploring the concept of multi-tenant FPGAs, where multiple independent users simultaneously share the same remote FPGA. Despite its benefits, multi-tenancy opens up the possibility of malicious users co-locating on the same FPGA as a victim user, and extracting sensitive information. This issue becomes especially serious when the user is running a machine learning algorithm that is processing sensitive or private information. To demonstrate the dangers, this paper presents a remote, power-based side-channel attack on a deep neural network accelerator running in a variety of Xilinx FPGAs and also on Cloud FPGAs using Amazon Web Services (AWS) F1 instances. This work in particular shows how to remotely obtain voltage estimates as a deep neural network inference circuit executes, and how the information can be used to recover the inputs to the neural network. The attack is demonstrated with a binarized convolutional neural network used to recognize handwriting images from the MNIST handwritten digit database. With the use of precise time-to-digital converters for remote voltage estimation, the MNIST inputs can be successfully recovered with a maximum normalized cross-correlation of 79% between the input image and the recovered image on local FPGA boards and 72% on AWS F1 instances. The attack requires no physical access nor modifications to the FPGA hardware.  more » « less
Award ID(s):
1901901
PAR ID:
10225319
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE journal on emerging and selected topics in circuits and systems
ISSN:
2156-3357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Multi-tenant FPGAs have recently been proposed, where multiple independent users simultaneously share a remote FPGA. Despite its benefits for cost and utilization, multi-tenancy opens up the possibility of malicious users extracting sensitive information from co-located victim users. To demonstrate the dangers, this paper presents a remote, power-based side-channel attack on a binarized neural network (BNN) accelerator. This work shows how to remotely obtain voltage estimates as the BNN circuit executes, and how the information can be used to recover the inputs to the BNN. The attack is demonstrated with a BNN used to recognize handwriting images from the MNIST dataset. With the use of precise time-to-digital converters (TDCs) for remote voltage estimation, the MNIST inputs can be successfully recovered with a maximum normalized cross-correlation of 75% between the input image and the recovered image. 
    more » « less
  2. The security and performance of FPGA-based accelerators play vital roles in today’s cloud services. In addition to supporting convenient access to high-end FPGAs, cloud vendors and third-party developers now provide numerous FPGA accelerators for machine learning models. However, the security of accelerators developed for state-of-the-art Cloud FPGA environments has not been fully explored, since most remote accelerator attacks have been prototyped on local FPGA boards in lab settings, rather than in Cloud FPGA environments. To address existing research gaps, this work analyzes three existing machine learning accelerators developed in Xilinx Vitis to assess the potential threats of power attacks on accelerators in Amazon Web Services (AWS) F1 Cloud FPGA platforms, in a multi-tenant setting. The experiments show that malicious co-tenants in a multi-tenant environment can instantiate voltage sensing circuits as register-transfer level (RTL) kernels within the Vitis design environment to spy on co-tenant modules. A methodology for launching a practical remote power attack on Cloud FPGAs is also presented, which uses an enhanced time-to-digital (TDC) based voltage sensor and auto-triggered mechanism. The TDC is used to capture power signatures, which are then used to identify power consumption spikes and observe activity patterns involving the FPGA shell, DRAM on the FPGA board, or the other co-tenant victim’s accelerators. Voltage change patterns related to shell use and accelerators are then used to create an auto-triggered attack that can automatically detect when to capture voltage traces without the need for a hard-wired synchronization signal between victim and attacker. To address the novel threats presented in this work, this paper also discusses defenses that could be leveraged to secure multi-tenant Cloud FPGAs from power-based attacks. 
    more » « less
  3. With increasing interest in Cloud FPGAs, such as Amazon's EC2 F1 instances or Microsoft's Azure with Catapult servers, FPGAs in cloud computing infrastructures can become targets for information leakages via convert channel communication. Cloud FPGAs leverage temporal sharing of the FPGA resources between users. This paper shows that heat generated by one user can be observed by another user who later uses the same FPGA. The covert data transfer can be achieved through simple on-off keying (OOK) and use of multiple FPGA boards in parallel significantly improves data throughput. The new temporal thermal covert channel is demonstrated on Microsoft's Catapult servers with FPGAs running remotely in the Texas Advanced Computing Center (TACC). A number of defenses against the new temporal thermal covert channel are presented at the end of the paper. 
    more » « less
  4. In recent decades, due to the emerging requirements of computation acceleration, cloud FPGAs have become popular in public clouds. Major cloud service providers, e.g. AWS and Microsoft Azure have provided FPGA computing resources in their infrastructure and have enabled users to design and deploy their own accelerators on these FPGAs. Multi-tenancy FPGAs, where multiple users can share the same FPGA fabric with certain types of isolation to improve resource efficiency, have already been proved feasible. However, this also raises security concerns. Various types of side-channel attacks targeting multi-tenancy FPGAs have been proposed and validated. The awareness of security vulnerabilities in the cloud has motivated cloud providers to take action to enhance the security of their cloud environments. In FPGA security research papers, researchers always perform attacks under the assumption that attackers successfully co-locate with victims and are aware of the existence of victims on the same FPGA board. However, the way to reach this point, i.e., how attack- ers secretly obtain information regarding accelerators on the same fabric, is constantly ignored despite the fact that it is non-trivial and important for attackers. In this paper, we present a novel finger- printing attack to gain the types of co-located FPGA accelerators. We utilize a seemingly non-malicious benchmark accelerator to sniff the communication link and collect performance traces of the FPGA-host communication link. By analyzing these traces, we are able to achieve high classification accuracy for fingerprinting co-located accelerators, which proves that attackers can use our method to perform cloud FPGA accelerator fingerprinting with a high success rate. As far as we know, this is the first paper targeting multi-tenant FPGA accelerator fingerprinting with the communica- tion side-channel. 
    more » « less
  5. Garbled Circuits (GC) is a technique for ensuring the privacy of inputs from users and is particularly well suited for FPGA implementations in the cloud where data analytics is frequently run. Secure Function Evaluation, such as that enabled by GC, is orders of magnitude slower than processing in the clear. We present our best implementation of GC on Amazon Web Services (AWS) that implements garbling on Amazon's FPGA enabled F1 instances. In this paper we present the largest problems garbled to date on FPGA instances, which includes problems that are represented by over four million gates. Our implementation speeds up garbling 20 times over software over a range of different circuit sizes. 
    more » « less