skip to main content

Title: A Practical Remote Power Attack on Machine Learning Accelerators in Cloud FPGAs
The security and performance of FPGA-based accelerators play vital roles in today’s cloud services. In addition to supporting convenient access to high-end FPGAs, cloud vendors and third-party developers now provide numerous FPGA accelerators for machine learning models. However, the security of accelerators developed for state-of-the-art Cloud FPGA environments has not been fully explored, since most remote accelerator attacks have been prototyped on local FPGA boards in lab settings, rather than in Cloud FPGA environments. To address existing research gaps, this work analyzes three existing machine learning accelerators developed in Xilinx Vitis to assess the potential threats of power attacks on accelerators in Amazon Web Services (AWS) F1 Cloud FPGA platforms, in a multi-tenant setting. The experiments show that malicious co-tenants in a multi-tenant environment can instantiate voltage sensing circuits as register-transfer level (RTL) kernels within the Vitis design environment to spy on co-tenant modules. A methodology for launching a practical remote power attack on Cloud FPGAs is also presented, which uses an enhanced time-to-digital (TDC) based voltage sensor and auto-triggered mechanism. The TDC is used to capture power signatures, which are then used to identify power consumption spikes and observe activity patterns involving the FPGA shell, DRAM on the FPGA board, or the other co-tenant victim’s accelerators. Voltage change patterns related to shell use and accelerators are then used to create an auto-triggered attack that can automatically detect when to capture voltage traces without the need for a hard-wired synchronization signal between victim and attacker. To address the novel threats presented in this work, this paper also discusses defenses that could be leveraged to secure multi-tenant Cloud FPGAs from power-based attacks.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)
Page Range / eLocation ID:
1 to 6
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    With the deployment of artificial intelligent (AI) algorithms in a large variety of applications, there creates an increasing need for high-performance computing capabilities. As a result, different hardware platforms have been utilized for acceleration purposes. Among these hardware-based accelerators, the field-programmable gate arrays (FPGAs) have gained a lot of attention due to their re-programmable characteristics, which provide customized control logic and computing operators. For example, FPGAs have recently been adopted for on-demand cloud services by the leading cloud providers like Amazon and Microsoft, providing acceleration for various compute-intensive tasks. While the co-residency of multiple tenants on a cloud FPGA chip increases the efficiency of resource utilization, it also creates unique attack surfaces that are under-explored. In this paper, we exploit the vulnerability associated with the shared power distribution network on cloud FPGAs. We present a stealthy power attack that can be remotely launched by a malicious tenant, shutting down the entire chip and resulting in denial-of-service for other co-located benign tenants. Specifically, we propose stealthy-shutdown: a well-timed power attack that can be implemented in two steps: (1) an attacker monitors the realtime FPGA power-consumption detected by ring-oscillator-based voltage sensors, and (2) when capturing high power-consuming moments, i.e., the power consumption by other tenants is above a certain threshold, she/he injects a well-timed power load to shut down the FPGA system. Note that in the proposed attack strategy, the power load injected by the attacker only accounts for a small portion of the overall power consumption; therefore, such attack strategy remains stealthy to the cloud FPGA operator. We successfully implement and validate the proposed attack on three FPGA evaluation kits with running real-world applications. The proposed attack results in a stealthy-shutdown, demonstrating severe security concerns of co-tenancy on cloud FPGAs. We also offer two countermeasures that can mitigate such power attacks. 
    more » « less
  2. null (Ed.)
    Architectural details of machine learning models are crucial pieces of intellectual property in many applications. Revealing the structure or types of layers in a model can result in a leak of confidential or proprietary information. This issue becomes especially concerning when the machine learning models are executed on accelerators in multi-tenant FPGAs where attackers can easily co-locate sensing circuitry next to the victim's machine learning accelerator. To evaluate such threats, we present the first remote power attack that can extract details of machine learning models executed on an off-the-shelf domain-specific instruction set architecture (ISA) based neural network accelerator implemented in an FPGA. By leveraging a time-to-digital converter (TDC), an attacker can deduce the composition of instruction groups executing on the victim accelerator, and recover parameters of General Matrix Multiplication (GEMM) instructions within a group, all without requiring physical access to the FPGA. With this information, an attacker can then reverse-engineer the structure and layers of machine learning models executing on the accelerator, leading to potential theft of proprietary information. 
    more » « less
  3. null (Ed.)
    To lower cost and increase the utilization of Cloud Field-Programmable Gate Arrays (FPGAs), researchers have recently been exploring the concept of multi-tenant FPGAs, where multiple independent users simultaneously share the same remote FPGA. Despite its benefits, multi-tenancy opens up the possibility of malicious users co-locating on the same FPGA as a victim user, and extracting sensitive information. This issue becomes especially serious when the user is running a machine learning algorithm that is processing sensitive or private information. To demonstrate the dangers, this paper presents a remote, power-based side-channel attack on a deep neural network accelerator running in a variety of Xilinx FPGAs and also on Cloud FPGAs using Amazon Web Services (AWS) F1 instances. This work in particular shows how to remotely obtain voltage estimates as a deep neural network inference circuit executes, and how the information can be used to recover the inputs to the neural network. The attack is demonstrated with a binarized convolutional neural network used to recognize handwriting images from the MNIST handwritten digit database. With the use of precise time-to-digital converters for remote voltage estimation, the MNIST inputs can be successfully recovered with a maximum normalized cross-correlation of 79% between the input image and the recovered image on local FPGA boards and 72% on AWS F1 instances. The attack requires no physical access nor modifications to the FPGA hardware. 
    more » « less
  4. Recent research has exposed a number of security issues related to the use of FPGAs in embedded system and cloud computing environments. Circuits that deliberately waste power can be carefully crafted by a malicious cloud FPGA user and deployed to cause denial-of-service and fault injection attacks. The main defense strategy used by FPGA cloud services involves checking user-submitted designs for circuit structures that are known to aggressively consume power. Unfortunately, this approach is limited by an attacker’s ability to conceive new designs that defeat existing checkers. In this work, our contributions are twofold. We evaluate a variety of circuit power wasting techniques that typically are not flagged by design rule checks imposed by FPGA cloud computing vendors. The efficiencies of five power wasting circuits, including our new design, are evaluated in terms of power consumed per logic resource. We then show that the source of voltage attacks based on power wasters can be identified. Our monitoring approach localizes the attack and suppresses the clock signal for the target region within 21 μs, which is fast enough to stop an attack before it causes a board reset. All experiments are performed using a state-of-the-art Intel Stratix 10 FPGA. 
    more » « less
  5. The availability of FPGAs in cloud data centers offers rapid, on-demand access to reconfigurable hardware compute resources that users can adapt to their own needs. However, the low-level access to the FPGA hardware and associated resources such as the PCIe bus, SSD drives, or DRAM modules also opens up threats of malicious attackers uploading designs that are able to infer information about other users or about the cloud infrastructure itself. In particular, this work presents a new, fast PCIe-contention-based channel that is able to transmit data between FPGA-accelerated virtual machines by modulating the PCIe bus usage. This channel further works with different operating systems, and achieves bandwidths reaching 20 kbps with 99% accuracy. This is the first cross-FPGA covert channel demonstrated on commercial clouds, and has a bandwidth which is over 2000 × larger than prior voltage- or temperature-based cross-board attacks. This paper further demonstrates that the PCIe receivers are able to not just receive covert transmissions, but can also perform fine-grained monitoring of the PCIe bus, including detecting when co-located VMs are initialized, even prior to their associated FPGAs being used. Moreover, the proposed mechanism can be used to infer the activities of other users, or even slow down the programming of the co-located FPGAs as well as other data transfers between the host and the FPGA. Beyond leaking information across different virtual machines, the ability to monitor the PCIe bandwidth over hours or days can be used to estimate the data center utilization and map the behavior of the other users. The paper also introduces further novel threats in FPGA-accelerated instances, including contention due to network traffic, contention due to shared NVMe SSDs, as well as thermal monitoring to identify FPGA co-location using the DRAM modules attached to the FPGA boards. This is the first work to demonstrate that it is possible to break the separation of privilege in FPGA-accelerated cloud environments, and highlights that defenses for public clouds using FPGAs need to consider PCIe, SSD, and DRAM resources as part of the attack surface that should be protected. 
    more » « less