Forced Soliton Equation and Semiclassical Soliton Form Factors
- Award ID(s):
- 1914505
- PAR ID:
- 10225423
- Date Published:
- Journal Name:
- Physical Review Letters
- Volume:
- 125
- Issue:
- 23
- ISSN:
- 0031-9007
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Milton, K. (Ed.)We review recent progress in the computation of leading quantum corrections to the energies of classical solitons with topological structure, including multi-soliton models in one space dimension and string configurations in three space dimensions. Taking advantage of analytic continuation techniques to efficiently organize the calculations, we show how quantum corrections affect the stability of solitons in the Shifman–Voloshin model, stabilize charged electroweak strings coupled to a heavy fermion doublet, and bind Nielsen–Olesen vortices at the classical transition between type I and type II superconductors.more » « less
-
Abstract Recent advances in of soliton microcombs have shown great promise to revolutionize many important areas such as optical communication, spectroscopic sensing, optical clock, and frequency synthesis. A largely tunable comb line spacing is crucial for the practical application of soliton microcombs, which unfortunately is challenging to realize for an on‐chip monolithic microresonators. The recently discovered perfect soliton crystal (PSC) offers a convenient route to tune the comb line spacing. However, excitation of a PSC is generally stochastic by its nature and accessing a certain PSC state requires delicate tuning procedure. Here the on‐demand generation of PSCs in a lithium niobate microresonator is demonstrated. The unique device characteristics allow to produce a variety of PSCs and to switch between different PSC states, deterministically and repetitively. The device is utilized to show arbitrary dialing of the comb line spacing from 1 to 11 times of the free‐spectral range of the resonator. The demonstration of PSCs on demand may now open up a great avenue for flexibly controlling the repetition rate of soliton pulses, which would significantly enhance and extend the application potential of soliton microcombs for communication, signal processing, and sensing.more » « less
An official website of the United States government

