skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The 31 March 2020 Mw 6.5 Stanley, Idaho, Earthquake: Seismotectonics and Preliminary Aftershock Analysis
Abstract We report on the tectonic framework, seismicity, and aftershock monitoring efforts related to the 31 March 2020 Mw 6.5 Stanley, Idaho, earthquake. The earthquake sequence has produced both strike-slip and dip-slip motion, with minimal surface displacement or damage. The earthquake occurred at the northern limits of the Sawtooth normal fault. This fault separates the Centennial tectonic belt, a zone of active seismicity within the Basin and Range Province, from the Idaho batholith to the west and Challis volcanic belt to the north and east. We show evidence for a potential kinematic link between the northeast-dipping Sawtooth fault and the southwest-dipping Lost River fault. These opposing faults have recorded four of the five M≥6 Idaho earthquakes from the past 76 yr, including 1983 Mw 6.9 Borah Peak and the 1944 M 6.1 and 1945 M 6.0 Seafoam earthquakes. Geological and geophysical data point to possible fault boundary segments driven by pre-existing geologic structures. We suggest that the limits of both the Sawtooth and Lost River faults extend north beyond their mapped extent, are influenced by the relic trans-Challis fault system, and that seismicity within this region will likely continue for the coming years. Ongoing seismic monitoring efforts will lead to an improved understanding of ground shaking potential and active fault characteristics.  more » « less
Award ID(s):
2029940
PAR ID:
10225488
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Seismological Research Letters
Volume:
92
Issue:
2A
ISSN:
0895-0695
Page Range / eLocation ID:
663 to 678
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Raton Basin has been an area of injection induced seismicity for the past two decades. Previously, the reactivated fault zone structures and spatiotemporal response of seismicity to evolving injection have been poorly constrained due to sparse publicly available seismic monitoring. The application of a machine‐learning phase picker to 4 years of continuous seismic data from a local array enables the detection and location of ∼38,000 earthquakes. The events from 2016 to 2020 are ∼2.5–6 km below sea level and range from ML < −1 to 4.2. Most earthquakes occur within previously identified ∼N‐S zones of seismicity, however our new catalog illuminates that these zones are composed of many short faults with variable orientations. The two most active zones, the Vermejo Park and Tercio zones, are potentially linked by small intermediate faults. In total, we find ∼60 short (<3 km long) basement faults with strikes from WNW to NNE. Faulting mechanisms are predominantly normal but some variability, including reverse dip‐slip and oblique‐slip, is observed. The Trinidad fault zone, which previously hosted a Mw5.3 earthquake in 2011, is quiescent during 2016–2020, likely in response to both slow accumulation of tectonic strain after the 2011 sequence, and the significant decrease (80% reduction) in nearby wastewater injection from 2012 to 2016. Unlike some other regions, where induced seismicity was triggered in response to higher injection rates, the Raton Basin's frequency‐magnitude and spatiotemporal statistics are not distinguishable from tectonic seismicity. The similarity suggests that seismicity in the Raton Basin is predominantly releasing tectonic stress. 
    more » « less
  2. Tsunamigenic earthquakes pose considerable risks, both economically and socially, yet earthquake and tsunami hazard assessments are typically conducted separately. Earthquakes associated with unexpected tsunamis, such as the 2018 Mw  7.5 strike-slip Sulawesi earthquake, emphasize the need to study the tsunami potential of active submarine faults in different tectonic settings. Here, we investigate physics-based scenarios combining simulations of 3D earthquake dynamic rupture and seismic wave propagation with tsunami generation and propagation. We present time-dependent modeling of one-way linked and 3D fully coupled earthquakes and tsunamis for the ∼ 100 km long Húsavík–Flatey Fault Zone (HFFZ) in North Iceland. Our analysis shows that the HFFZ has the potential to generate sizable tsunamis. The six dynamic rupture models sourcing our tsunami scenarios vary regarding hypocenter location, spatiotemporal evolution, fault slip, and fault structure complexity but coincide with historical earthquake magnitudes. Earthquake dynamic rupture scenarios on a less segmented fault system, particularly with a hypocenter location in the eastern part of the fault system, have a larger potential for local tsunami generation. Here, dynamically evolving large shallow fault slip (∼ 8 m), near-surface rake rotation (± 20∘), and significant coseismic vertical displacements of the local bathymetry (± 1 m) facilitate strike-slip faulting tsunami generation. We model tsunami crest to trough differences (total wave heights) of up to ∼ 0.9 m near the town Ólafsfjörður. In contrast, none of our scenarios endanger the town of Akureyri, which is shielded by multiple reflections within the narrow Eyjafjörður bay and by Hrísey island. We compare the modeled one-way linked tsunami waveforms with simulation results using a 3D fully coupled approach. We find good agreement in the tsunami arrival times and location of maximum tsunami heights. While seismic waves result in transient motions of the sea surface and affect the ocean response, they do not appear to contribute to tsunami generation. However, complex source effects arise in the fully coupled simulations, such as tsunami dispersion effects and the complex superposition of seismic and acoustic waves within the shallow continental shelf of North Iceland. We find that the vertical velocity amplitudes of near-source acoustic waves are unexpectedly high – larger than those corresponding to the actual tsunami – which may serve as a rapid indicator of surface dynamic rupture. Our results have important implications for understanding the tsunamigenic potential of strike-slip fault systems worldwide and the coseismic acoustic wave excitation during tsunami generation and may help to inform future tsunami early warning systems. 
    more » « less
  3. Abstract Subduction forearcs are subject to seismic hazard from upper plate faults that are often invisible to instrumental monitoring networks. Identifying active faults in forearcs therefore requires integration of geomorphic, geologic, and paleoseismic data. We demonstrate the utility of a combined approach in a densely populated region of Vancouver Island, Canada, by combining remote sensing, historical imagery, field investigations, and shallow geophysical surveys to identify a previously unrecognized active fault, theXEOLXELEK‐Elk Lake fault, in the northern Cascadia forearc, ∼10 km north of the city of Victoria. Lidar‐derived digital terrain models and historical air photos show a ∼2.5‐m‐high scarp along the surface of a Quaternary drumlinoid ridge. Paleoseismic trenching and electrical resistivity tomography surveys across the scarp reveal a single reverse‐slip earthquake produced a fault‐propagation fold above a blind southwest‐dipping fault. Five geologically plausible chronological models of radiocarbon dated charcoal constrain the likely earthquake age to between 4.7 and 2.3 ka. Fault‐propagation fold modeling indicates ∼3.2 m of reverse slip on a blind, 50° southwest‐dipping fault can reproduce the observed deformation. Fault scaling relations suggest aM6.1–7.6 earthquake with a 13 to 73‐km‐long surface rupture and 2.3–3.2 m of dip slip may be responsible for the deformation observed in the paleoseismic trench. An earthquake near this magnitude in Greater Victoria could result in major damage, and our results highlight the importance of augmenting instrumental monitoring networks with remote sensing and field studies to identify and characterize active faults in similarily challenging environments. 
    more » « less
  4. Abstract. Tsunamigenic earthquakes pose considerable risks, both economically and socially, yet earthquake and tsunami hazard assessments are typically conducted separately. Earthquakes associated with unexpected tsunamis, such as the 2018 Mw  7.5 strike-slip Sulawesi earthquake, emphasize the need to study the tsunami potential of active submarine faults in different tectonic settings. Here, we investigate physics-based scenarios combining simulations of 3D earthquake dynamic rupture and seismic wave propagation with tsunami generation and propagation. We present time-dependent modeling of one-way linked and 3D fully coupled earthquakes and tsunamis for the ∼ 100 km long Húsavík–Flatey Fault Zone (HFFZ) in North Iceland. Our analysis shows that the HFFZ has the potential to generate sizable tsunamis. The six dynamic rupture models sourcing our tsunami scenarios vary regarding hypocenter location, spatiotemporal evolution, fault slip, and fault structure complexity but coincide with historical earthquake magnitudes. Earthquake dynamic rupture scenarios on a less segmented fault system, particularly with a hypocenter location in the eastern part of the fault system, have a larger potential for local tsunami generation. Here, dynamically evolving large shallow fault slip (∼ 8 m), near-surface rake rotation (± 20∘), and significant coseismic vertical displacements of the local bathymetry (± 1 m) facilitate strike-slip faulting tsunami generation. We model tsunami crest to trough differences (total wave heights) of up to ∼ 0.9 m near the town Ólafsfjörður. In contrast, none of our scenarios endanger the town of Akureyri, which is shielded by multiple reflections within the narrow Eyjafjörður bay and by Hrísey island. We compare the modeled one-way linked tsunami waveforms with simulation results using a 3D fully coupled approach. We find good agreement in the tsunami arrival times and location of maximum tsunami heights. While seismic waves result in transient motions of the sea surface and affect the ocean response, they do not appear to contribute to tsunami generation. However, complex source effects arise in the fully coupled simulations, such as tsunami dispersion effects and the complex superposition of seismic and acoustic waves within the shallow continental shelf of North Iceland. We find that the vertical velocity amplitudes of near-source acoustic waves are unexpectedly high – larger than those corresponding to the actual tsunami – which may serve as a rapid indicator of surface dynamic rupture. Our results have important implications for understanding the tsunamigenic potential of strike-slip fault systems worldwide and the coseismic acoustic wave excitation during tsunami generation and may help to inform future tsunami early warning systems. 
    more » « less
  5. Abstract Despite a lack of modern large earthquakes on shallowly dipping normal faults, Holocene M w  > 7 low-angle normal fault (LANF; dip<30°) ruptures are preserved paleoseismically and inferred from historical earthquake and tsunami accounts. Even in well-recorded megathrust earthquakes, the effects of non-linear off-fault plasticity and dynamically reactivated splay faults on shallow deformation and surface displacements, and thus hazard, remain elusive. We develop data-constrained 3D dynamic rupture models of the active Mai’iu LANF that highlight how multiple dynamic shallow deformation mechanisms compete during large LANF earthquakes. We show that shallowly-dipping synthetic splays host more coseismic slip and limit shallow LANF rupture more than steeper antithetic splays. Inelastic hanging-wall yielding localizes into subplanar shear bands indicative of newly initiated splay faults, most prominently above LANFs with thick sedimentary basins. Dynamic splay faulting and sediment failure limit shallow LANF rupture, modulating coseismic subsidence patterns, near-shore slip velocities, and the seismic and tsunami hazards posed by LANF earthquakes. 
    more » « less