skip to main content

This content will become publicly available on December 1, 2024

Title: Dueling dynamics of low-angle normal fault rupture with splay faulting and off-fault damage
Abstract Despite a lack of modern large earthquakes on shallowly dipping normal faults, Holocene M w  > 7 low-angle normal fault (LANF; dip<30°) ruptures are preserved paleoseismically and inferred from historical earthquake and tsunami accounts. Even in well-recorded megathrust earthquakes, the effects of non-linear off-fault plasticity and dynamically reactivated splay faults on shallow deformation and surface displacements, and thus hazard, remain elusive. We develop data-constrained 3D dynamic rupture models of the active Mai’iu LANF that highlight how multiple dynamic shallow deformation mechanisms compete during large LANF earthquakes. We show that shallowly-dipping synthetic splays host more coseismic slip and limit shallow LANF rupture more than steeper antithetic splays. Inelastic hanging-wall yielding localizes into subplanar shear bands indicative of newly initiated splay faults, most prominently above LANFs with thick sedimentary basins. Dynamic splay faulting and sediment failure limit shallow LANF rupture, modulating coseismic subsidence patterns, near-shore slip velocities, and the seismic and tsunami hazards posed by LANF earthquakes.  more » « less
Award ID(s):
2121666 2121568
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this

    We seek to improve our understanding of the physical processes that control the style, distribution, and intensity of ground surface ruptures on thrust and reverse faults during large earthquakes. Our study combines insights from coseismic ground surface ruptures in historic earthquakes and patterns of deformation in analog sandbox fault experiments to inform the development of a suite of geomechanical models based on the distinct element method (DEM). We explore how model parameters related to fault geometry and sediment properties control ground deformation characteristics such as scarp height, width, dip, and patterns of secondary folding and fracturing. DEM is well suited to this investigation because it can effectively model the geologic processes of faulting at depth in cohesive rocks, as well as the granular mechanics of soil and sediment deformation in the shallow subsurface. Our results show that localized fault scarps are most prominent in cases with strong sediment on steeply dipping faults, whereas broader deformation is prominent in weaker sediment on shallowly dipping faults. Based on insights from 45 experiments, the key parameters that influence scarp morphology include the amount of accumulated slip on a fault, the fault dip, and the sediment strength. We propose a fault scarp classification system that describes the general patterns of surface deformation observed in natural settings and reproduced in our models, including monoclinal, pressure ridge, and simple scarps. Each fault scarp type is often modified by hanging-wall collapse. These results can help to guide both deterministic and probabilistic assessment in fault displacement hazard analysis.

    more » « less
  2. SUMMARY Physics-based simulations provide a path to overcome the lack of observational data hampering a holistic understanding of earthquake faulting and crustal deformation across the vastly varying space–time scales governing the seismic cycle. However, simulations of sequences of earthquakes and aseismic slip (SEAS) including the complex geometries and heterogeneities of the subsurface are challenging. We present a symmetric interior penalty discontinuous Galerkin (SIPG) method to perform SEAS simulations accounting for the aforementioned challenges. Due to the discontinuous nature of the approximation, the spatial discretization natively provides a means to impose boundary and interface conditions. The method accommodates 2-D and 3-D domains, is of arbitrary order, handles subelement variations in material properties and supports isoparametric elements, that is, high-order representations of the exterior boundaries, interior material interfaces and embedded faults. We provide an open-source reference implementation, Tandem, that utilizes highly efficient kernels for evaluating the SIPG linear and bilinear forms, is inherently parallel and well suited to perform high-resolution simulations on large-scale distributed memory architectures. Additional flexibility and efficiency is provided by optionally defining the displacement evaluation via a discrete Green’s function approach, exploiting advantages of both the boundary integral and volumetric methods. The optional discrete Green’s functions are evaluated once in a pre-computation stage using algorithmically optimal and scalable sparse parallel solvers and pre-conditioners. We illustrate the characteristics of the SIPG formulation via an extensive suite of verification problems (analytic, manufactured and code comparison) for elastostatic and quasi-dynamic problems. Our verification suite demonstrates that high-order convergence of the discrete solution can be achieved in space and time and highlights the benefits of using a high-order representation of the displacement, material properties and geometries. We apply Tandem to realistic demonstration models consisting of a 2-D SEAS multifault scenario on a shallowly dipping normal fault with four curved splay faults, and a 3-D intersecting multifault scenario of elastostatic instantaneous displacement of the 2019 Ridgecrest, CA, earthquake sequence. We exploit the curvilinear geometry representation in both application examples and elucidate the importance of accurate stress (or displacement gradient) representation on-fault. This study entails several methodological novelties. We derive a sharp bound on the smallest value of the SIPG penalty ensuring stability for isotropic, elastic materials; define a new flux to incorporate embedded faults in a standard SIPG scheme; employ a hybrid multilevel pre-conditioner for the discrete elasticity problem; and demonstrate that curvilinear elements are specifically beneficial for volumetric SEAS simulations. We show that our method can be applied for solving interesting geophysical problems using massively parallel computing. Finally, this is the first time a discontinuous Galerkin method is published for the numerical simulations of SEAS, opening new avenues to pursue extreme scale 3-D SEAS simulations in the future. 
    more » « less
  3. ABSTRACT The July 2019 Ridgecrest, California, earthquake sequence involved two large events—the M 6.4 foreshock and the M 7.1 mainshock that ruptured a system of intersecting strike-slip faults. We present analysis of space geodetic observations including Synthetic Aperture Radar and Global Navigation Satellite System data, geological field mapping, and seismicity to constrain the subsurface rupture geometry and slip distribution. The data render a complex pattern of faulting with a number of subparallel as well as cross-cutting fault strands that exhibit variations in both strike and dip angles, including a “flower structure” formed by shallow splay faults. Slip inversions are performed using both homogeneous and layered elastic half-space models informed by the local seismic tomography data. The inferred slip distribution suggests a moderate amount of the shallow coseismic slip deficit. The peak moment release occurred in the depth interval of 3–4 km, consistent with results from previous studies of major strike-slip earthquakes, and the depth distribution of seismicity in California. We use the derived slip models to investigate stress transfer and possible triggering relationships between the M 7.1 mainshock and the M 6.4 foreshock, as well as other moderate events that occurred in the vicinity of the M 7.1 hypocenter. Triggering is discouraged for the average strike of the M 7.1 rupture (320°) but encouraged for the initial orientation of the mainshock rupture suggested by the first-motion data (340°). This lends support to a scenario according to which the earthquake rupture nucleated on a small fault that was more optimally oriented with respect to the regional stress and subsequently propagated along the less-favorably oriented pre-existing faults, possibly facilitated by dynamic weakening. The nucleation site of the mainshock experienced positive dynamic Coulomb stress changes that are much larger than the static stress changes, yet the former failed to initiate rupture. 
    more » « less
  4. Abstract

    Within the fore‐arc of the Cascadia Subduction Zone, there are significant along‐strike differences in the orientation of splay faults, sediment consolidation, and fault roughness. Here, we use dynamic rupture simulations of megathrust earthquakes on different realizations of a fault system that incorporate fore‐arc properties representative of offshore Oregon and Washington to estimate how splay faults may behave in future megathrust earthquakes in Cascadia. While splay faults were activated in all of our simulations, splay orientation is a primary control on slip amplitude. Seaward vergent faults accommodate significant amounts of slip resulting in large seafloor uplift and significantly larger tsunami amplitudes. For example, our median tsunami heights including splay faults are about a factor of two larger than those that did not include splay fault deformation. We suggest that there is an urgent need to revisit existing approaches to tsunami hazard assessment in Cascadia to include the influence of splay faults.

    more » « less
  5. Abstract

    Detailed imaging of accretionary wedges reveals splay fault networks that could pose a significant tsunami hazard. However, the dynamics of multiple splay fault activation during megathrust earthquakes and the consequent effects on tsunami generation are not well understood. We use a 2‐D dynamic rupture model with complex topo‐bathymetry and six curved splay fault geometries constrained from realistic tectonic loading modeled by a geodynamic seismic cycle model with consistent initial stress and strength conditions. We find that all splay faults rupture coseismically. While the largest splay fault slips due to a complex rupture branching process from the megathrust, all other splay faults are activated either top down or bottom up by dynamic stress transfer induced by trapped seismic waves. We ascribe these differences to local non‐optimal fault orientations and variable along‐dip strength excess. Generally, rupture on splay faults is facilitated by their favorable stress orientations and low strength excess as a result of high pore‐fluid pressures. The ensuing tsunami modeled with non‐linear 1‐D shallow water equations consists of one high‐amplitude crest related to rupture on the longest splay fault and a second broader wave packet resulting from slip on the other faults. This results in two episodes of flooding and a larger run‐up distance than the single long‐wavelength (300 km) tsunami sourced by the megathrust‐only rupture. Since splay fault activation is determined by both variable stress and strength conditions and dynamic activation, considering both tectonic and earthquake processes is relevant for understanding tsunamigenesis.

    more » « less