skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Circuit-Theoretic Approach to State Estimation
Traditional state estimation (SE) methods that are based on nonlinear minimization of the sum of localized measurement error functionals are known to suffer from nonconvergence and large residual errors. In this paper we propose an equivalent circuit formulation (ECF)-based SE approach that inherently considers the complete network topology and associated physical constraints. We analyze the mathematical differences between the two approaches and show that our approach produces a linear state-estimator that is mathematically a quadratic programming (QP) problem with closed-form solution. Furthermore, this formulation imposes additional topology-based constraints that provably shrink the feasible region and promote convergence to a more physically meaningful solution. From a probabilistic viewpoint, we show that our method applies prior knowledge into the estimate, thus converging to a more physics-based estimate than the traditional observation-driven maximum likelihood estimator (MLE). Importantly, incorporation of the entire system topology and underlying physics, while being linear, makes ECF-based SE advantageous for large-scale systems.  more » « less
Award ID(s):
1800812
PAR ID:
10225574
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)
Page Range / eLocation ID:
1126 to 1130
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, there has been a major emphasis on developing data-driven approaches involving machine learning (ML) for high-speed static state estimation (SE) in power systems. The emphasis stems from the ability of ML to overcome difficulties associated with model-based approaches, such as handling of non-Gaussian measurement noise. However, topology changes pose a stiff challenge for performing ML-based SE because the training and test environments become different when such changes occur. This paper circumvents this challenge by formulating a graph neural network (GNN)-based time-synchronized state estimator that considers the physical connections of the power system during the training itself. The results obtained using the IEEE 118-bus system indicate that the GNN-based state estimator outperforms both the model-based linear state estimator and a data-driven deep neural network-based state estimator in the presence of non-Gaussian measurement noise and topology changes, respectively. 
    more » « less
  2. We consider the problem of finding consistent matches across multiple images. Current state-of-the-art solutions use constraints on cycles of matches together with convex optimization, leading to computationally intensive iterative algorithms. In this paper, we instead propose a clustering-based formulation: we first rigorously show its equivalence with traditional approaches, and then propose QuickMatch, a novel algorithm that identifies multi-image matches from a density function in feature space. Specifically, QuickMatch uses the density estimate to order the points in a tree, and then extracts the matches by breaking this tree using feature distances and measures of distinctiveness. Our algorithm outperforms previous state-of-the-art methods (such as MatchALS) in accuracy, and it is significantly faster (up to 62 times faster on some benchmarks), and can scale to large datasets (with more than twenty thousands features). 
    more » « less
  3. State-of-the art physics-model based dynamic state estimation generally relies on the assumption that the system’s transition matrix is always correct, the one that relates the states in two different time instants, which might not hold always on real-life applications. Further, while making such assumptions, state-of-the-art dynamic state estimation models become unable to discriminate among different types of anomalies, as measurement gross errors and sudden load changes, and thus automatically leads the state estimator framework to inaccuracy. Towards the solution of this important challenge, in this work, a hybrid adaptive dynamic state estimator framework is presented. Based on the Kalman Filter formulation, measurement innovation analytical-based tests are presented and integrated into the state estimator framework. Gross measurement errors and sudden load changes are automatically detected, identified, and corrected, providing continuous updating of the state estimator. Towards such, the asymmetry index applied to the measurement innovation is introduced, as an anomaly discrimination method, which assesses the physics-model-based dynamic state estimation process in different piece-wise stationary levels. Comparative tests with the state-of-the-art are presented, considering the IEEE 14, IEEE 30, and IEEE 118 test systems. Easy-to-implement-model, without hard-to-design parameters, build-on the classical Kalman Filter solution, highlights potential aspects towards real-life applications. 
    more » « less
  4. We propose a component-based (CB) parametric model order reduction (pMOR) formulation for parameterized nonlinear elliptic partial differential equations. CB-pMOR is designed to deal with large-scale problems for which full-order solves are not affordable in a reasonable time frame or parameters' variations induce topology changes that prevent the application of monolithic pMOR techniques. We rely on the partition-of-unity method to devise global approximation spaces from local reduced spaces, and on Galerkin projection to compute the global state estimate. We propose a randomized data compression algorithm based on oversampling for the construction of the components' reduced spaces: the approach exploits random boundary conditions of controlled smoothness on the oversampling boundary. We further propose an adaptive residual-based enrichment algorithm that exploits global reduced-order solves on representative systems to update the local reduced spaces. We prove exponential convergence of the enrichment procedure for linear coercive problems; we further present numerical results for a two-dimensional nonlinear diffusion problem to illustrate the many features of our methodology and demonstrate its effectiveness. 
    more » « less
  5. We address the problem of online topology inference from streaming nodal observations of graph signals generated by linear diffusion dynamics on the sought graph. To that end, we leverage the stationarity of the signals and use the so-called graph-shift operator (GSO) as a matrix representation of the graph. Under this model, estimated covariance eigenvectors obtained from streaming independent graph signals diffused on the sought network are a valid estimator of the GSO's spectral templates. We develop an ADMM algorithm to find a sparse and structurally admissible GSO given the eigenvectors estimate. Then, we propose an online scheme that upon sensing new diffused observations, efficiently updates eigenvectors (thus makes more accurate on expectation) and performs only one or a few iterations of the mentioned ADMM until the new data is observed. Numerical tests illustrate the effectiveness of the proposed topology inference approach in recovering large scale graphs, adapting to streaming information, and accommodating changes in the sought network. 
    more » « less