Abstract High‐resolution topography reveals that floodplains along meandering rivers in Indiana commonly contain intermittently flowing channel networks. We investigated how the presence of floodplain channels affects lateral surface‐water connectivity between a river and floodplain (specifically exchange flux and timescales of transport) as a function of flow stage in a low‐gradient river‐floodplain system. We constructed a two‐dimensional, surface‐water hydrodynamic model using Hydrologic Engineering Center's River Analysis System (HEC‐RAS) 2D along 32 km of floodplain (56 km along the river) of the East Fork White River near Seymour, Indiana, USA, using lidar elevation data and surveyed river bathymetry. The model was calibrated using land‐cover specific roughness to elevation‐discharge data from a U.S. Geological Survey gage and validated against high‐water marks, an aerial photo showing the spatial extent of floodplain inundation, and measured flow velocities. Using the model results, we analyzed the flow in the river, spatial patterns of inundation, flow pathways, river‐floodplain exchange, and water residence time on the floodplain. Our results highlight that bankfull flow is an oversimplified concept for explaining river‐floodplain connectivity because some stream banks are overtopped and major low‐lying floodplain channels are inundated roughly 19 days per year. As flow increased, inundation of floodplain channels at higher elevations dissected the floodplain, until the floodplain channels became fully inundated. Additionally, we found that river‐floodplain exchange was driven by bank height or channel orientation depending on flow conditions. We propose a conceptual model of river‐floodplain connectivity dynamics and developed metrics to analyze quantitatively complex river‐floodplain systems.
more »
« less
Intermittent Channel Systems of a Low‐Relief, Low‐Gradient Floodplain: Comparison of Automatic Extraction Methods
Intermittent floodplain channels are low‐relief conduits etched into the floodplain surface and remain dry much of the year. These channels comprise expansive systems and are important because during low‐level inundation they facilitate lateral hydraulic connectivity throughout the floodplain. Nevertheless, few studies have focused on these floodplain channels due to uncertainty in how to identify and characterize these systems in digital elevation models (DEMs). In particular, their automatic extraction from widely available DEMs is challenging due to the characteristically low‐relief and low‐gradient topography of floodplains. We applied three channel extraction approaches to the Congaree River floodplain DEM and compared the results to a channel reference map created through numerous field excursions over the past 30 years. The methods that we tested are based on flow accumulation area, topographic curvature, and mathematical morphology, or the D8, Laplacian, and bottom‐hat transform (BHT), respectively. Of the 198 km of reference channels the BHT, Laplacian, and D8 extracted 83%, 71%, and 23%, respectively, and the BHT consistently had the highest agreement with the reference network at the local (5 m) and regional (10 km) scales. The extraction results also include commission “error”, augmenting the reference map with about 100 km of channel length. Overall, the BHT method provided the best results for channel extraction, giving over 298 km in 69 km2 with a detrended regional relief of 1.9 m. Further, these analyses allow us to shed light on the meaning and use of the term “low‐relief landscapes”.
more »
« less
- Award ID(s):
- 1751926
- PAR ID:
- 10225581
- Date Published:
- Journal Name:
- Water resources research
- Volume:
- 56
- Issue:
- 9
- ISSN:
- 1944-7973
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Genetic divergence along the central Baja California Peninsula, Mexico, has been hypothesized to reflect a Pliocene cross-peninsular seaway that previously isolated northern and southern populations of terrestrial plants and animals. One way to test this hypothesis is through quantitative analysis of relict channels preserved on low-relief paleo-surfaces. Recognition of tidal channels on relict landscapes offers a powerful tool for reconstructing past sea level in tectonically active arid coastal regions where crustal uplift results in relative sea-level fall and preservation of ancient channel networks. This method requires reliable criteria to distinguish fluvial versus tidal channels, which is challenging due to the overlap of standard metrics for the two channel types, and possible inheritance or overprinting of geometries. We improve the utility of existing metrics and explore the potential for identifying paleo-sea-level indicators by analyzing modern and ancient channels to identify unique patterns in planform geometry and to evaluate their applicability for classifying tidal versus fluvial origins. Preliminary measurements of geographically diverse modern systems reveal distinct, quantifiable differences between the two channel types in along-channel curvature, width, and wavelet spectra. Modern tidal channels display a pronounced and systematic down-channel increase in channel width and decrease in curvature. In contrast, modern fluvial channels do not display spatial patterns in channel width and curvature along their lengths. These patterns provide diagnostic criteria that can be paired with wavelet analysis of meander belts to classify the paleoenvironment of ancient channels based on their planform geometry. We apply this approach to evaluate the origin of channels preserved on relict landscapes in the San Ignacio trough in the central Baja California peninsula, a former low-relief embayment of the Pacific Ocean. Early results reveal the presence of ancient tidal channel networks at elevations of ~ 50-300 m above modern sea level on surfaces that are independently dated to be ca. 4-5 Ma. These findings provide evidence for post 4-Ma uplift in the mid-peninsular region and an ancient tidal environment that may have isolated northern and southern terrestrial populations.more » « less
-
ABSTRACT Buried channel sand bodies are important reservoirs of subsurface water and energy resources, but their arrangement and interconnectedness are difficult to predict. The dominant process that distributes channels and their sediments in alluvial basins is river avulsion, which occurs when a channel seeks a new location on the adjacent floodplain. Floodplain sedimentation, incision, and channel levee growth influence channel pathfinding during avulsion, and should control key aspects of the stratigraphic arrangement of channel bodies, including compensational (spatially and temporally even) deposition, stratigraphic completeness, and facies distributions; however, this impact has been difficult to isolate in natural and experimental basin fills. To test how different avulsion pathfinding parameters influence stratigraphic architecture, we use a numerical model of a fluvial fan to produce synthetic fluvial stratigraphy under seven different runs with progressively more complex channel pathfinding rules. In the simplest models where pathfinding is set by a random walk, the channel rapidly changes position and avulsions spread across the fan surface. The corresponding deposit is dominated by channel facies, is relatively incomplete, and the compensation timescale is short. As rules for pathfinding become more complex and channels can be attracted or repulsed by pre-existing channels, lobe switching emerges. Deposits become more diverse with a mix of channel and floodplain facies, stratigraphic completeness increases, and the compensation timescale lengthens. Previous work suggests that the compensation timescale is related to the burial timescale and relief across the depositional surface, yet we find that compensation approaches the burial timescale only for model runs with high morphodynamic complexity and relatively long topographic memory. Our results imply that in simple systems with limited degrees of freedom, the compensation timescale may become detached from the burial timescale, with uniform sedimentation occurring quickly relative to long burial timescales.more » « less
-
ABSTRACT Floodplains along low‐gradient, meandering river systems contain diverse hydrogeomorphic features, ranging from isolated depressions to hydrologically‐connected channels. These ephemerally‐flooded features inundate prior to river water overtopping all banks, enhancing river‐floodplain connectivity during moderately high flow stages. Predicting when and where ecological functions occur in floodplains requires understanding the dynamic hydrologic processes of hydrogeomorphic features, including inundation and exchange. In this study, we examined storm event‐scale inundation and exchange dynamics along a lowland, meandering river system in central Illinois (USA). We monitored surface water presence/absence, surface water level, and groundwater level across floodplain hydrogeomorphic feature types (i.e., isolated depression, backwater channel, and flow‐through channel). Using these data, we evaluated inundation onset and recession characteristics, drivers of groundwater‐surface water interactions, and direction of hydrologic exchange with the river channel. Surface water presence/absence patterns suggested inundation onset timescales were primarily controlled by microtopography and recession timescales were correlated with floodplain elevation. Employing a novel hysteresis approach for characterising groundwater‐surface water interactions, we observed distinct patterns indicating differences in water sources across hydrogeomorphic units and event characteristics. Finally, differences in hydraulic head along floodplain channels revealed that channels with multiple inlets/outlets (i.e., flow‐through channels) conveyed down‐valley flow and channels with single inlets primarily functioned as sinks of river‐derived water to the floodplain with short source periods. These results highlight the heterogeneity of hydrologic processes that occur along lowland, meandering river‐floodplains, and more specifically, point to the important role hydrogeomorphic features play in controlling dynamic connectivity within the river corridor.more » « less
-
Abstract Relatively little is known about the geomorphological characteristics of floodplain secondary channels and the potential for floodplain flows to mobilize bed material within these channels. This study examines the geomorphological characteristics (channel form, material properties, wood jams) and bed‐material mobilization potential of secondary channels on the floodplain of a meandering river in Illinois, USA. It also compares these attributes to those of the main channel. Results show that secondary channels are at most about one‐third the size of the main channel but also vary in size over distance. Channel dimensions tend to be greatest near the proximal connection of secondary channels to the main channel, suggesting that flow from the main channel is effective in producing scour where it enters secondary channels. The beds of secondary channels consist mainly of mud in contrast to sand and gravel on the bed of the main channel, implying that secondary channels do not convey bed material from the main channel onto the floodplain. Secondary channels connected to the main channel at both ends have more abundant active wood jams than those connected only at the proximal end. Flow from the main channel enters secondary channels at sub‐bankfull stages, but maximum mobilization of cohesive bed material in secondary channels only occurs during flows that exceed the average bankfull stage in the main channel. Overall, secondary channels are active conduits of flow, sediment, and large wood on floodplains and can contribute to floodplain sediment fluxes through entrainment of bed material.more » « less
An official website of the United States government

