skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Mitochondrial copper and phosphate transporter specificity was defined early in the evolution of eukaryotes
The mitochondrial carrier family protein SLC25A3 transports both copper and phosphate in mammals, yet in Saccharomyces cerevisiae the transport of these substrates is partitioned across two paralogs: PIC2 and MIR1. To understand the ancestral state of copper and phosphate transport in mitochondria, we explored the evolutionary relationships of PIC2 and MIR1 orthologs across the eukaryotic tree of life. Phylogenetic analyses revealed that PIC2-like and MIR1-like orthologs are present in all major eukaryotic supergroups, indicating an ancient gene duplication created these paralogs. To link this phylogenetic signal to protein function, we used structural modeling and site-directed mutagenesis to identify residues involved in copper and phosphate transport. Based on these analyses, we generated an L175A variant of mouse SLC25A3 that retains the ability to transport copper but not phosphate. This work highlights the utility of using an evolutionary framework to uncover amino acids involved in substrate recognition by mitochondrial carrier family proteins.  more » « less
Award ID(s):
2021886
PAR ID:
10225875
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
eLife
Volume:
10
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The typical owl family (Strigidae) comprises 194 species in 28 genera, 14 of which are monotypic. Relationships within and among genera in the typical owls have been challenging to discern because mitochondrial data have produced equivocal results and because many monotypic genera have been omitted from previous molecular analyses. Here, we collected and analyzed DNA sequences of ultraconserved elements (UCEs) from 43 species of typical owls to produce concatenated and multispecies coalescent-based phylogenetic hypotheses for all but one genus in the typical owl family. Our results reveal extensive paraphyly of taxonomic groups across phylogenies inferred using different analytical approaches and suggest the genera Athene, Otus, Asio, Megascops, Bubo, and Strix are paraphyletic, whereas Ninox and Glaucidium are polyphyletic. Secondary analyses of protein-coding mitochondrial genes harvested from off-target sequencing reads and mitochondrial genomes downloaded from GenBank generally support the extent of paraphyly we observe, although some disagreements exist at higher taxonomic levels between our nuclear and mitochondrial phylogenetic hypotheses. Overall, our results demonstrate the importance of taxon sampling for understanding and describing evolutionary relationships in this group, as well as the need for additional sampling, study, and taxonomic revision of typical owl species. Additionally, our findings highlight how both divergence and convergence in morphological characters have obscured our understanding of the evolutionary history of typical owls, particularly those with insular distributions.

     
    more » « less
  2. Abstract

    Functional innovation at the protein level is a key source of evolutionary novelties. The constraints on functional innovations are likely to be highly specific in different proteins, which are shaped by their unique histories and the extent of global epistasis that arises from their structures and biochemistries. These contextual nuances in the sequence–function relationship have implications both for a basic understanding of the evolutionary process and for engineering proteins with desirable properties. Here, we have investigated the molecular basis of novel function in a model member of an ancient, conserved, and biotechnologically relevant protein family. These Major Facilitator Superfamily sugar porters are a functionally diverse group of proteins that are thought to be highly plastic and evolvable. By dissecting a recent evolutionary innovation in an α-glucoside transporter from the yeast Saccharomyces eubayanus, we show that the ability to transport a novel substrate requires high-order interactions between many protein regions and numerous specific residues proximal to the transport channel. To reconcile the functional diversity of this family with the constrained evolution of this model protein, we generated new, state-of-the-art genome annotations for 332 Saccharomycotina yeast species spanning ∼400 My of evolution. By integrating phylogenetic and phenotypic analyses across these species, we show that the model yeast α-glucoside transporters likely evolved from a multifunctional ancestor and became subfunctionalized. The accumulation of additive and epistatic substitutions likely entrenched this subfunction, which made the simultaneous acquisition of multiple interacting substitutions the only reasonably accessible path to novelty.

     
    more » « less
  3. Phosphate is an indispensable metabolite in a wide variety of cells and is involved in nucleotide and lipid synthesis, signaling, and chemical energy storage. Proton-coupled phosphate transporters within the major facilitator family are crucial for phosphate uptake in plants and fungi. Similar proton-coupled phosphate transporters have been found in different protozoan parasites that cause human diseases, in breast cancer cells with elevated phosphate demand, in osteoclast-like cells during bone reabsorption, and in human intestinal Caco2BBE cells for phosphate homeostasis. However, the mechanism of proton-driven phosphate transport remains unclear. Here, we demonstrate in a eukaryotic, high-affinity phosphate transporter fromPiriformospora indica(PiPT) that deprotonation of aspartate 324 (D324) triggers phosphate release. Quantum mechanics/molecular mechanics molecular dynamics simulations combined with free energy sampling have been employed here to identify the proton transport pathways from D324 upon the transition from the occluded structure to the inward open structure and phosphate release. The computational insights so gained are then corroborated by studies of D45N and D45E amino acid substitutions via mutagenesis experiments. Our findings confirm the function of the structurally predicted cytosolic proton exit tunnel and suggest insights into the role of the titratable phosphate substrate.

     
    more » « less
  4. PhyloFisher is a software package, written in Python3, that contains a protocol designed for phylogenomic dataset assembly and data exploration. This software package aids in the construction and curation of protein sequence-based phylogenomic datasets, conducts post-assembly analyses, and allows visualization of the results. In addition, PhyloFisher currently includes a manually curated starting dataset of 240 proteins from 304 eukaryotic taxa representing the full breadth of known diversity in the eukaryotic tree of life. Importantly, this dataset also includes identified paralogs of each of the 240 proteins from all investigated taxa which is crucial for the identification of probable orthologs. Although PhyloFisher includes this pan-eukaryotic dataset, the tool is flexible and can work with any dataset consisting of protein sequences derived from eukaryotes. The combination of all of the foregoing features makes PhyloFisher a broadly-useful, user-friendly software tool for sophisticated phylogenomic analyses of eukaryotes.

    PROJECT WEBSITE: http://amoeba.msstate.edu/phylofisher/
    PROJECT GITHUB: http://github.com/TheBrownLab/PhyloFisher

    This dataset contains files for endusers to retrieve for installation of PhyloFisher as well as accompanying data from the PhyloFisher manuscript.

    Tice_etal.PhyloFisher.archives.tar.gz | Installation requirements for PIP installation
    Tice_etal.PhyloFisher1.FINAL_DATASET_RENAMED.tar.gz | File dataset associated with the manuscript including matrices and phylogenetic analyses
    Tice_etal.PhyloFisher_v1.0_input_proteomes_LongNames.tar.gz | Input proteome data from taxa that was used to construct PhyloFisher v1.0
    Tice_etal.PhyloFisherDatabase_v1.0_Jan.28.2021.tar.gz | PhyloFisher v1.0 starting database
    Tice_etal.PhyloFisher_FOR_CUSTOM_DATASET_Jan.28.2021.tar.gz | Necessary files and directory structure to be used in custom database construction.
    Tice_etal.PhyloFisher.DATA.tgz | All data associated with the figures (Fig 3, 4, A-Y) along with all phylogenomic trees and analyses.


     
    more » « less
  5. McCallion, A (Ed.)
    Abstract

    Gene duplication and subsequent molecular evolution can give rise to taxon-specific gene specializations. In previous work, we found evidence that African weakly electric fish (Mormyridae) may have as many as three copies of the epdl2 gene, and the expression of two epdl2 genes is correlated with electric signal divergence. Epdl2 belongs to the ependymin-related family (EPDR), a functionally diverse family of secretory glycoproteins. In this study, we first describe vertebrate EPDR evolution and then present a detailed evolutionary history of epdl2 in Mormyridae with emphasis on the speciose genus Paramormyrops. Using Sanger sequencing, we confirm three apparently functional epdl2 genes in Paramormyrops kingsleyae. Next, we developed a nanopore-based amplicon sequencing strategy and bioinformatics pipeline to obtain and classify full-length epdl2 gene sequences (N = 34) across Mormyridae. Our phylogenetic analysis proposes three or four epdl2 paralogs dating from early Paramormyrops evolution. Finally, we conducted selection tests which detected positive selection around the duplication events and identified ten sites likely targeted by selection in the resulting paralogs. These sites’ locations in our modeled 3D protein structure involve four sites in ligand binding and six sites in homodimer formation. Together, these findings strongly imply an evolutionary mechanism whereby epdl2 genes underwent selection-driven functional specialization after tandem duplications in the rapidly speciating Paramormyrops. Considering previous evidence, we propose that epdl2 may contribute to electric signal diversification in mormyrids, an important aspect of species recognition during mating.

     
    more » « less