Fluid-Mineral Partitioning of REE in Critical Mineral Deposits
More Like this
-
McSween, Harry (Ed.)Abstract The locations of minerals and mineral-forming environments, despite being of great scientific importance and economic interest, are often difficult to predict due to the complex nature of natural systems. In this work, we embrace the complexity and inherent “messiness” of our planet's intertwined geological, chemical, and biological systems by employing machine learning to characterize patterns embedded in the multidimensionality of mineral occurrence and associations. These patterns are a product of, and therefore offer insight into, the Earth's dynamic evolutionary history. Mineral association analysis quantifies high-dimensional multicorrelations in mineral localities across the globe, enabling the identification of previously unknown mineral occurrences, as well as mineral assemblages and their associated paragenetic modes. In this study, we have predicted (i) the previously unknown mineral inventory of the Mars analogue site, Tecopa Basin, (ii) new locations of uranium minerals, particularly those important to understanding the oxidation–hydration history of uraninite, (iii) new deposits of critical minerals, specifically rare earth element (REE)- and Li-bearing phases, and (iv) changes in mineralization and mineral associations through deep time, including a discussion of possible biases in mineralogical data and sampling; furthermore, we have (v) tested and confirmed several of these mineral occurrence predictions in nature, thereby providing ground truth of the predictive method. Mineral association analysis is a predictive method that will enhance our understanding of mineralization and mineralizing environments on Earth, across our solar system, and through deep time.more » « less
-
Abstract Minerals are information-rich materials that offer researchers a glimpse into the evolution of planetary bodies. Thus, it is important to extract, analyze, and interpret this abundance of information to improve our understanding of the planetary bodies in our solar system and the role our planet’s geosphere played in the origin and evolution of life. Over the past several decades, data-driven efforts in mineralogy have seen a gradual increase. The development and application of data science and analytics methods to mineralogy, while extremely promising, has also been somewhat ad hoc in nature. To systematize and synthesize the direction of these efforts, we introduce the concept of “Mineral Informatics,” which is the next frontier for researchers working with mineral data. In this paper, we present our vision for Mineral Informatics and the X-Informatics underpinnings that led to its conception, as well as the needs, challenges, opportunities, and future directions of the field. The intention of this paper is not to create a new specific field or a sub-field as a separate silo, but to document the needs of researchers studying minerals in various contexts and fields of study, to demonstrate how the systemization and enhanced access to mineralogical data will increase cross- and interdisciplinary studies, and how data science and informatics methods are a key next step in integrative mineralogical studies.more » « less
-
Hummer, Daniel (Ed.)Abstract Minerals are the fundamental constituents of Earth, and mineral names appear in scientific literature for disciplines including geology, chemistry, materials science, biology, and medicine, among others. Choosing a name is the full responsibility of the authors of new mineral proposals submitted to the International Mineralogical Association (IMA). Scientific nomenclature and its traditions have evolved over time, and consequently, mineral names track changes in the landscape of mineralogy with respect to language, technology, and culture. To evaluate these changes, the namesake information for all 5896 minerals approved by the IMA or “grandfathered” into use as of December 2022 was recorded and categorized within a workable database. The compiled information yields diverse insights into the intersection of science and culture and could also be used to project future trends. In this study, we used the name database to investigate gender diversity among mineral eponyms. More than half (ca. 54%) of all mineral species are named after people, the identities of whom are largely a reflection of the people that have historically been involved, in one way or another, in the geosciences and the mining industry. Of the 2738 people with minerals named for them, ∼6.1% are (interpreted to be) women. Nearly all minerals named for women were named during the last 60 years, although the growth rate in the year-on-year percentage of women among new mineral namesakes has slowed since about 1985. If current and historical trends hold, our model predicts that women will not comprise more than about 10.35% of newly established mineral namesakes in future years. The representation of women among mineral namesakes also differs starkly among countries. For example, Russians comprise 43.11% of women with minerals named for them but account for only 15.12% of all eponyms. However, there are additional disparities beyond the proportions of namesakes. For scientists who were alive when a mineral was named for them, women averaged 3.74 years older than men when evaluated over the same timespan (1954–2022). These results demonstrate that gender-based disparities are imprinted into current mineral nomenclature and indicate that gender parity among new mineral namesakes is impossible without unprecedented changes in the upstream demographics that are most likely to affect naming trends.more » « less
-
Titanium (Ti) typically exhibits low mobility in geologic fluids due to the low aqueous solubility of common (Fe-)Ti oxide minerals. Consequently, Ti isotope variations (δ49/47Ti, given as δ49Ti) in geologic systems are primarily attributed to magmatic differentiation. Thus, the potential for fluid-mineral fractionation has received less attention. However, ligand-rich fluids are capable of mobilizing Ti as observed in natural systems and laboratory studies. As hydrothermal ore mineralization is commonly associated with ligand-rich brines capable of transporting significant quantities of metals, Ti isotopes may aid in understanding mineralization and alteration in complex hydrothermal systems. Here we present data from computational modeling of various Ti coordination complexes theorized to exist in geologic systems and/or under relevant experimental conditions as well as computed fractionation factors for various Ti-bearing crystalline phases to investigate the basic mechanics of equilibrium fluid-mineral Ti isotope fractionation. These results indicate that equilibrium fluid-mineral Ti isotope exchange between our modeled Ti complexes and phases with 6-coordinated Ti is predicted to generally lead to enrichment of heavy Ti isotopes in the fluid. Because minerals with 6-coordinated Ti (such as magnetite and ilmenite) are the most important reservoirs of Ti in the solid Earth, Ti isotope equilibration between terrestrial rocks and fluids can be generalized to enrich the fluid in heavy Ti isotopes. We also performed magnetite-ülvospinel leaching experiments to investigate fluid-mineral Ti isotope fractionation in this phase. Mineral leaching experiments varying acid strength, leaching temperature, and reaction time with HCl and HF qualitatively support the prediction that the fluid phase will become enriched in heavy Ti isotopes during fluid-mineral interactions that approach equilibrium with Ti-rich magnetite. Additionally, the leaching data also suggest that the fluid becomes slightly enriched in lighter Ti isotopes when Ti exchange is limited—potentially due to kinetic effects. Therefore, magnetite from natural systems may be depleted in heavy Ti isotopes during regenerative mineral replacement involving equilibration with fluids or may possibly become depleted in light Ti isotopes under a kinetic fractionation regime—leading to mineral δ49Ti values that are insufficiently explained by magmatic differentiation or inter-mineral fractionation. These results are a first look at fluid-mineral interactions that may affect Ti isotope fractionation in hydrothermal mineral systems, and Ti isotopes should be further studied as a potential method of understanding aqueous metal transport and tracing alteration in mineral deposits.more » « less
An official website of the United States government

