skip to main content


Title: Transcriptional activity differentiates families of Marine Group II Euryarchaeota in the coastal ocean
Abstract Marine Group II Euryarchaeota ( Candidatus Poseidoniales), abundant but yet-uncultivated members of marine microbial communities, are thought to be (photo)heterotrophs that metabolize dissolved organic matter (DOM), such as lipids and peptides. However, little is known about their transcriptional activity. We mapped reads from a metatranscriptomic time series collected at Sapelo Island (GA, USA) to metagenome-assembled genomes to determine the diversity of transcriptionally active Ca . Poseidoniales. Summer metatranscriptomes had the highest abundance of Ca . Poseidoniales transcripts, mostly from the O1 and O3 genera within Ca . Thalassarchaeaceae (MGIIb). In contrast, transcripts from fall and winter samples were predominantly from Ca . Poseidoniaceae (MGIIa). Genes encoding proteorhodopsin, membrane-bound pyrophosphatase, peptidase/proteases, and part of the ß-oxidation pathway were highly transcribed across abundant genera. Highly transcribed genes specific to Ca . Thalassarchaeaceae included xanthine/uracil permease and receptors for amino acid transporters. Enrichment of Ca . Thalassarchaeaceae transcript reads related to protein/peptide, nucleic acid, and amino acid transport and metabolism, as well as transcript depletion during dark incubations, provided further evidence of heterotrophic metabolism. Quantitative PCR analysis of South Atlantic Bight samples indicated consistently abundant Ca . Poseidoniales in nearshore and inshore waters. Together, our data suggest that Ca . Thalassarchaeaceae are important photoheterotrophs potentially linking DOM and nitrogen cycling in coastal waters.  more » « less
Award ID(s):
1656311 1832178
NSF-PAR ID:
10226057
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ISME Communications
Volume:
1
Issue:
1
ISSN:
2730-6151
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mosquitoes transmit a wide variety of devastating pathogens when they bite vertebrate hosts and feed on their blood. However, three entire mosquito genera and many individual species in other genera have evolved a nonbiting life history in which blood is not required to produce eggs. Our long-term goal is to develop novel interventions that reduce or eliminate the biting behavior in vector mosquitoes. A previous study used biting and nonbiting populations of a nonvector mosquito, Wyeomyia smithii, as a model to uncover the transcriptional basis of the evolutionary transition from a biting to a nonbiting life history. Herein, we ask whether the molecular pathways that were differentially expressed due to differences in biting behavior in W. smithii are also differentially expressed between subspecies of Culex pipiens that are obligate biting (Culex pipiens pipiens) and facultatively nonbiting (Culex pipiens molestus). Results from RNAseq of adult heads show dramatic upregulation of transcripts in the ribosomal protein pathway in biting C. pipiens, recapitulating the results in W. smithii, and implicating the ancient and highly conserved ribosome as the intersection to understanding the evolutionary and physiological basis of blood feeding in mosquitoes. Biting Culex also strongly upregulate energy production pathways, including oxidative phosphorylation and the citric acid (TCA) cycle relative to nonbiters, a distinction that was not observed in W. smithii. Amino acid metabolism pathways were enriched for differentially expressed genes in biting versus nonbiting Culex. Relative to biters, nonbiting Culex upregulated sugar metabolism and transcripts contributing to reproductive allocation (vitellogenin and cathepsins). These results provide a foundation for developing strategies to determine the natural evolutionary transition between a biting and nonbiting life history in vector mosquitoes. 
    more » « less
  2. Bordenstein, Seth (Ed.)
    ABSTRACT Viruses belonging to the Nucleocytoviricota phylum are globally distributed and include members with notably large genomes and complex functional repertoires. Recent studies have shown that these viruses are particularly diverse and abundant in marine systems, but the magnitude of actively replicating Nucleocytoviricota present in ocean habitats remains unclear. In this study, we compiled a curated database of 2,431 Nucleocytoviricota genomes and used it to examine the gene expression of these viruses in a 2.5-day metatranscriptomic time-series from surface waters of the California Current. We identified 145 viral genomes with high levels of gene expression, including 90 Imitervirales and 49 Algavirales viruses. In addition to recovering high expression of core genes involved in information processing that are commonly expressed during viral infection, we also identified transcripts of diverse viral metabolic genes from pathways such as glycolysis, the TCA cycle, and the pentose phosphate pathway, suggesting that virus-mediated reprogramming of central carbon metabolism is common in oceanic surface waters. Surprisingly, we also identified viral transcripts with homology to actin, myosin, and kinesin domains, suggesting that viruses may use these gene products to manipulate host cytoskeletal dynamics during infection. We performed phylogenetic analysis on the virus-encoded myosin and kinesin proteins, which demonstrated that most belong to deep-branching viral clades, but that others appear to have been acquired from eukaryotes more recently. Our results highlight a remarkable diversity of active Nucleocytoviricota in a coastal marine system and underscore the complex functional repertoires expressed by these viruses during infection. IMPORTANCE The discovery of giant viruses has transformed our understanding of viral complexity. Although viruses have traditionally been viewed as filterable infectious agents that lack metabolism, giant viruses can reach sizes rivalling cellular lineages and possess genomes encoding central metabolic processes. Recent studies have shown that giant viruses are widespread in aquatic systems, but the activity of these viruses and the extent to which they reprogram host physiology in situ remains unclear. Here, we show that numerous giant viruses consistently express central metabolic enzymes in a coastal marine system, including components of glycolysis, the TCA cycle, and other pathways involved in nutrient homeostasis. Moreover, we found expression of several viral-encoded actin, myosin, and kinesin genes, indicating viral manipulation of the host cytoskeleton during infection. Our study reveals a high activity of giant viruses in a coastal marine system and indicates they are a diverse and underappreciated component of microbial diversity in the ocean. 
    more » « less
  3. Glass, Jennifer B. (Ed.)
    ABSTRACT Interactions between bacteria and phytoplankton can influence primary production, community composition, and algal bloom development. However, these interactions are poorly described for many consortia, particularly for freshwater bloom-forming cyanobacteria. Here, we assessed the gene content and expression of two uncultivated Acidobacteria from Lake Erie Microcystis blooms. These organisms were targeted because they were previously identified as important catalase producers in Microcystis blooms, suggesting that they protect Microcystis from H 2 O 2 . Metatranscriptomics revealed that both Acidobacteria transcribed genes for uptake of organic compounds that are known cyanobacterial products and exudates, including lactate, glycolate, amino acids, peptides, and cobalamins. Expressed genes for amino acid metabolism and peptide transport and degradation suggest that use of amino acids and peptides by Acidobacteria may regenerate nitrogen for cyanobacteria and other organisms. The Acidobacteria genomes lacked genes for biosynthesis of cobalamins but expressed genes for its transport and remodeling. This indicates that the Acidobacteria obtained cobalamins externally, potentially from Microcystis , which has a complete gene repertoire for pseudocobalamin biosynthesis; expressed them in field samples; and produced pseudocobalamin in axenic culture. Both Acidobacteria were detected in Microcystis blooms worldwide. Together, the data support the hypotheses that uncultured and previously unidentified Acidobacteria taxa exchange metabolites with phytoplankton during harmful cyanobacterial blooms and influence nitrogen available to phytoplankton. Thus, novel Acidobacteria may play a role in cyanobacterial physiology and bloom development. IMPORTANCE Interactions between heterotrophic bacteria and phytoplankton influence competition and successions between phytoplankton taxa, thereby influencing ecosystem-wide processes such as carbon cycling and algal bloom development. The cyanobacterium Microcystis forms harmful blooms in freshwaters worldwide and grows in buoyant colonies that harbor other bacteria in their phycospheres. Bacteria in the phycosphere and in the surrounding community likely influence Microcystis physiology and ecology and thus the development of freshwater harmful cyanobacterial blooms. However, the impacts and mechanisms of interaction between bacteria and Microcystis are not fully understood. This study explores the mechanisms of interaction between Microcystis and uncultured members of its phycosphere in situ with population genome resolution to investigate the cooccurrence of Microcystis and freshwater Acidobacteria in blooms worldwide. 
    more » « less
  4. null (Ed.)
    Background Frog Virus 3 (FV3) is a large dsDNA virus belonging to Ranaviruses of family Iridoviridae . Ranaviruses infect cold-blood vertebrates including amphibians, fish and reptiles, and contribute to catastrophic amphibian declines. FV3 has a genome at ~105 kb that contains nearly 100 coding genes and 50 intergenic regions as annotated in its reference genome. Previous studies have mainly focused on coding genes and rarely addressed potential non-coding regulatory role of intergenic regions. Results Using a whole transcriptomic analysis of total RNA samples containing both the viral and cellular transcripts from FV3-infected frog tissues, we detected virus-specific reads mapping in non-coding intergenic regions, in addition to reads from coding genes. Further analyses identified multiple cis -regulatory elements ( CREs ) in intergenic regions neighboring highly transcribed coding genes. These CREs include not only a virus TATA-Box present in FV3 core promoters as in eukaryotic genes, but also viral mimics of CREs interacting with several transcription factors including CEBPs, CREBs, IRFs, NF-κB, and STATs, which are critical for regulation of cellular immunity and cytokine responses. Our study suggests that intergenic regions immediately upstream of highly expressed FV3 genes have evolved to bind IRFs, NF-κB, and STATs more efficiently. Moreover, we found an enrichment of putative microRNA (miRNA) sequences in more than five intergenic regions of the FV3 genome. Our sequence analysis indicates that a fraction of these viral miRNAs is targeting the 3’-UTR regions of Xenopus genes involved in interferon (IFN)-dependent responses, including particularly those encoding IFN receptor subunits and IFN-regulatory factors (IRFs). Conclusions Using the FV3 model, this study provides a first genome-wide analysis of non-coding regulatory mechanisms adopted by ranaviruses to epigenetically regulate both viral and host gene expressions, which have co-evolved to interact especially with the host IFN response. 
    more » « less
  5. Bowman, Jeff (Ed.)
    ABSTRACT Some marine microbes are seemingly “ubiquitous,” thriving across a wide range of environmental conditions. While the increased depth in metagenomic sequencing has led to a growing body of research on within-population heterogeneity in environmental microbial populations, there have been fewer systematic comparisons and characterizations of population-level genetic diversity over broader expanses of time and space. Here, we investigated the factors that govern the diversification of ubiquitous microbial taxa found within and between ocean basins. Specifically, we use mapped metagenomic paired reads to examine the genetic diversity of ammonia-oxidizing archaeal (“ Candidatus Nitrosopelagicus brevis”) populations in the Pacific (Hawaii Ocean Time-series [HOT]) and Atlantic (Bermuda Atlantic Time Series [BATS]) Oceans sampled over 2 years. We observed higher nucleotide diversity in “ Ca. N. brevis” at HOT, driven by a higher rate of homologous recombination. In contrast, “ Ca. N. brevis” at BATS featured a more open pangenome with a larger set of genes that were specific to BATS, suggesting a history of dynamic gene gain and loss events. Furthermore, we identified highly differentiated genes that were regulatory in function, some of which exhibited evidence of recent selective sweeps. These findings indicate that different modes of genetic diversification likely incur specific adaptive advantages depending on the selective pressures that they are under. Within-population diversity generated by the environment-specific strategies of genetic diversification is likely key to the ecological success of “ Ca. N. brevis.” IMPORTANCE Ammonia-oxidizing archaea (AOA) are one of the most abundant chemolithoautotrophic microbes in the marine water column and are major contributors to global carbon and nitrogen cycling. Despite their ecological importance and geographical pervasiveness, there have been limited systematic comparisons and characterizations of their population-level genetic diversity over time and space. Here, we use metagenomic time series from two ocean observatories to address the fundamental questions of how abiotic and biotic factors shape the population-level genetic diversity and how natural microbial populations adapt across diverse habitats. We show that the marine AOA “ Candidatus Nitrosopelagicus brevis” in different ocean basins exhibits distinct modes of genetic diversification in response to their selective regimes shaped by nutrient availability and patterns of environmental fluctuations. Our findings specific to “ Ca. N. brevis” have broader implications, particularly in understanding the population-level responses to the changing climate and predicting its impact on biogeochemical cycles. 
    more » « less