skip to main content


Title: Spatial and temporal variation in nest temperatures forecasts sex ratio skews in a crocodilian with environmental sex determination
Species displaying temperature-dependent sex determination (TSD) are especially vulnerable to the effects of a rapidly changing global climate due to their profound sensitivity to thermal cues during development. Predicting the consequences of climate change for these species, including skewed offspring sex ratios, depends on understanding how climatic factors interface with features of maternal nesting behaviour to shape the developmental environment. Here, we measure thermal profiles in 86 nests at two geographically distinct sites in the northern and southern regions of the American alligator's ( Alligator mississippiensis ) geographical range, and examine the influence of both climatic factors and maternally driven nest characteristics on nest temperature variation. Changes in daily maximum air temperatures drive annual trends in nest temperatures, while variation in individual nest temperatures is also related to local habitat factors and microclimate characteristics. Without any compensatory nesting behaviours, nest temperatures are projected to increase by 1.6–3.7°C by the year 2100, and these changes are predicted to have dramatic consequences for offspring sex ratios. Exact sex ratio outcomes vary widely depending on site and emission scenario as a function of the unique temperature-by-sex reaction norm exhibited by all crocodilians. By revealing the ecological drivers of nest temperature variation in the American alligator, this study provides important insights into the potential consequences of climate change for crocodilian species, many of which are already threatened by extinction.  more » « less
Award ID(s):
1754903
PAR ID:
10226137
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
287
Issue:
1926
ISSN:
0962-8452
Page Range / eLocation ID:
20200210
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Considerations of the impact climate change has on reptiles are typically focused on habitat change or loss, range shifts and skewed sex ratios in species with temperature-dependent sex determination. Here, we show that incubation temperature alters stripe number and head colouration of hatchling American alligators (Alligator mississippiensis). Animals incubated at higher temperatures (33.5°C) had, on average, one more stripe than those at lower temperatures (29.5°C), and also had significantly lighter heads. These patterns were not affected by estradiol-induced sex reversal, suggesting independence from hatchling sex. Therefore, increases in nest temperatures as a result of climate change have the potential to alter pigmentation patterning, which may have implications for offspring fitness. 
    more » « less
  2. null (Ed.)
    The environment experienced during embryonic development is a rich source of phenotypic variation, as environmental signals have the potential to both inform adaptive plastic responses and disrupt normal developmental programs. Environment-by-embryo interactions are particularly consequential for species with temperature-dependent sex determination, a mode of sex determination common in non-avian reptiles and fish, in which thermal cues during a discrete period of development drive the formation of either an ovary or a testis. Here we examine the impact of thermal variation during incubation in combination with developmental exposure to a common endocrine-disrupting contaminant on fitness-related hatchling traits in the American alligator (Alligator mississippiensis), a species with temperature-dependent sex determination. Using a factorial design, we exposed field-collected eggs to five thermal profiles (three constant temperatures, two fluctuating temperatures) and two environmentally relevant doses of the pesticide metabolite dichlorodiphenyldichloroethylene; and we quantified incubation duration, sex ratios, hatchling morphometric traits, and growth (9–10 days post-hatch). Whereas dichlorodiphenyldichloroethylene exposure did not generally affect hatchling traits, constant and fluctuating temperatures produced diverse phenotypic effects. Thermal fluctuations led to subtle changes in incubation duration and produced shorter hatchlings with smaller heads when compared to the constant temperature control. Warmer, male-promoting incubation temperatures resulted in larger hatchlings with more residual yolk reserves when compared to cooler, female-promoting temperatures. Together, these findings advance our understanding of how complex environmental factors interact with developing organisms to generate phenotypic variation and raise questions regarding the mechanisms connecting variable thermal conditions to responses in hatchling traits and their evolutionary implications for temperature-dependent sex determination. 
    more » « less
  3. Abstract Conservation of thermally sensitive species depends on monitoring organismal and population‐level responses to environmental change in real time. Epigenetic processes are increasingly recognized as key integrators of environmental conditions into developmentally plastic responses, and attendant epigenomic data sets hold potential for revealing cryptic phenotypes relevant to conservation efforts. Here, we demonstrate the utility of genome‐wide DNA methylation (DNAm) patterns in the face of climate change for a group of especially vulnerable species, those with temperature‐dependent sex determination (TSD). Due to their reliance on thermal cues during development to determine sexual fate, contemporary shifts in temperature are predicted to skew offspring sex ratios and ultimately destabilize sensitive populations. Using reduced‐representation bisulphite sequencing, we profiled the DNA methylome in blood cells of hatchling American alligators ( Alligator mississippiensis ), a TSD species lacking reliable markers of sexual dimorphism in early life stages. We identified 120 sex‐associated differentially methylated cytosines (DMCs; FDR < 0.1) in hatchlings incubated under a range of temperatures, as well as 707 unique temperature‐associated DMCs. We further developed DNAm‐based models capable of predicting hatchling sex with 100% accuracy (in 20 training samples and four test samples) and past incubation temperature with a mean absolute error of 1.2°C (in four test samples) based on the methylation status of 20 and 24 loci, respectively. Though largely independent of epigenomic patterning occurring in the embryonic gonad during TSD, DNAm patterns in blood cells may serve as nonlethal markers of hatchling sex and past incubation conditions in conservation applications. These findings also raise intriguing questions regarding tissue‐specific epigenomic patterning in the context of developmental plasticity. 
    more » « less
  4. Abstract

    Most organisms experience thermal variability in their environment; however, our understanding of how organisms cope with this variation is under-developed. For example, in organisms with temperature-dependent sex determination (TSD), an inability to predict sex ratios under fluctuating incubation temperatures in the field hinders predictions of how species with TSD will fare in a changing climate. To better understand how sex determination is affected by thermal variation, we incubated Trachemys scripta eggs using a “heat wave” design, where embryos experienced a male-producing temperature of 25 ± 3°C for the majority of development and varying durations at a female-producing temperature of 29.5 ± 3°C during the window of development when sex is determined. We compared the sex ratios from these incubation conditions with a previous data set that utilized a similar heat wave design, but instead incubated eggs at a male-producing temperature of 27 ± 3°C but utilized the same female-producing temperature of 29.5 ± 3°C. We compared the sex ratio reaction norms produced from these two incubation conditions and found that, despite differences in average temperatures, both conditions produced 50:50 sex ratios after ∼8 days of exposure to female-producing conditions. This emphasizes that sex can be determined in just a few days at female-producing conditions and that sex determination is relatively unaffected by temperatures outside of this short window. Further, these data demonstrate the reduced accuracy of the constant temperature equivalent model (the leading method of predicting sex ratios) under thermally variable temperatures. Conceptualizing sex determination as the number of days spent incubating at female-producing conditions rather than an aggregate statistic is supported by the mechanistic underpinnings of TSD, helps to improve sex ratio estimation methods, and has important consequences for predicting how species with TSD will fare in a changing climate.

     
    more » « less
  5. null (Ed.)
    Synopsis An organism’s ability to integrate transient environmental cues experienced during development into molecular and physiological responses forms the basis for adaptive shifts in phenotypic trajectories. During temperature-dependent sex determination (TSD), thermal cues during discrete periods in development coordinate molecular changes that ultimately dictate sexual fate and contribute to patterns of inter- and intra-sexual variation. How these mechanisms interface with dynamic thermal environments in nature remain largely unknown. By deploying thermal loggers in wild nests of the American alligator (Alligator mississippiensis) over two consecutive breeding seasons, we observed that 80% of nests exhibit both male- and female-promoting thermal cues during the thermosensitive period, and of these nests, all exhibited both male- and female-promoting temperatures within the span of a single day. These observations raise a critical question—how are opposing environmental cues integrated into sexually dimorphic transcriptional programs across short temporal scales? To address this question, alligator embryos were exposed to fluctuating temperatures based on nest thermal profiles and sampled over the course of a daily thermal fluctuation. We examined the expression dynamics of upstream genes in the temperature-sensing pathway and find that post-transcriptional alternative splicing and transcript abundance of epigenetic modifier genes JARID2 and KDM6B respond rapidly to thermal fluctuations while transcriptional changes of downstream effector genes, SOX9 and DMRT1, occur on a delayed timescale. Our findings reveal how the basic mechanisms of TSD operate in an ecologically relevant context. We present a hypothetical hierarchical model based on our findings as well as previous studies, in which temperature-sensitive alternative splicing incrementally influences the epigenetic landscape to affect the transcriptional activity of key sex-determining genes. 
    more » « less