Tropical cyclones can severely disturb shallow, continental shelf ecosystems, affecting habitat structure, diversity, and ecosystem services. This study examines the impacts of Hurricane Ian on the Southwest Florida Shelf by assessing water quality, substrate type, and epibenthic and microbial community characteristics at eight sites (3 to 20 m in depth) before and after Ian’s passage in 2022. Hurricane Ian drastically changed substrate type and biotic cover, scouring away epibenthos and/or burying hard substrates in mud and sand, especially at mid depth (10 m) sites (92–98% loss). Following Hurricane Ian, the greatest losses were observed in fleshy macroalgae (58%), calcareous green algae (100%), seagrass (100%), sessile invertebrates (77%), and stony coral communities (71%), while soft coral (17%) and sponge communities (45%) were more resistant. After Ian, turbidity, chromophoric dissolved organic matter, and dissolved inorganic nitrogen and phosphorus increased at most sites, while total nitrogen, total phosphorus, and silica decreased. Microbial communities changed significantly post Ian, with estuary-associated taxa expanding further offshore. The results show that the shelf ecosystem is highly susceptible to disturbances from waves, deposition and erosion, and water quality changes caused by mixing and coastal discharge. More routine monitoring of this environment is necessary to understand the long-term patterns of these disturbances, their interactions, and how they influence the resilience and recovery processes of shelf ecosystems.
more »
« less
Impacts of Hurricanes Irma and Maria on coral reef sponges in St. Thomas, U.S. Virgin Islands
Many studies have evaluated the impacts of hurricanes on coral communities, but far less is known about impacts, recovery, and resilience of sponge communities to these extreme events. In September 2017, St. Thomas, U.S. Virgin Islands, was impacted by two Category 5 hurricanes within 2 weeks: Hurricanes Irma and Maria. Such extreme events occurring in such rapid succession are virtually unprecedented. Pre-hurricane (2015, 2016) surveys of permanent transects at six sites around St. Thomas were compared with those at 10 weeks post-hurricanes (December 2017) to evaluate storm impacts on sponges and on benthic coral reef constituents. These surveys also established a baseline for evaluating future recovery. Percent cover of sponges declined by 24.9% post-hurricanes. In contrast, sponge density increased by 43.9% from 2015 to 2016 and declined slightly after the hurricanes. Overall sponge volume did not vary over time, and whereas sponge diversity was similar in 2015 and 2016, it increased post-hurricanes. Sponge morphologies were differentially affected by the hurricanes; the proportion of upright sponges declined by 36.9%, while there was a 24.4% increase in encrusting sponges. Coral and macroalgal cover did not change significantly over the sampling period, while percent cover of epilithic algae increased and non-living substrata decreased from 2015 to 2016 but did not change further post-hurricanes. At all sites, recruitment and/or regrowth of sponges was observed within 10 weeks post-hurricanes, indicating potential resilience in Caribbean sponge communities. Whether these sponge communities return to pre-hurricane conditions and how long that will take remains to be seen.
more »
« less
- Award ID(s):
- 1810616
- PAR ID:
- 10226141
- Date Published:
- Journal Name:
- Estuaries and coasts
- Volume:
- 43
- ISSN:
- 1559-2723
- Page Range / eLocation ID:
- 1235-1247
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Anthropogenic climate change is intensifying natural disturbance regimes, which negatively affects some species, while benefiting others. This could alter the trait composition of ecological communities and influence resilience to disturbance. We investigated how the frequency and intensification of the regional storm regime (and likely other disturbances) is altering coral species composition and in turn resistance and recovery. We developed regional databases of coral cover and composition (3144 reef locations from 1970 to 2017) and of the path and strength of cyclonic storms in the region (including 10,058 unique storm-reef intersections). We found that total living coral cover declined steadily through 2017 (the median annual loss rate was ~ 0.25% per year). Our results also indicate that despite the observed increase in the intensity of Atlantic cyclonic storms, their effect on coral cover has decreased markedly. This could be due in part to selection for disturbance-resistant taxa in response to the intensifying disturbance regime. We found that storms accelerated the loss of threatened acroporid corals but had no measurable effect on the cover of more resilient “weedy” corals, thereby increasing their relative cover. Although resistance to disturbance has increased, recovery rates have slowed due to the dominance of small, slow-growing species. This feedback loop is locking coral communities into a low-functioning state dominated by weedy species with limited ecological or societal value.more » « less
-
Widespread Deposition in a Coastal Bay Following Three Major 2017 Hurricanes (Irma, Jose, and Maria)In 2017, three major hurricanes (Irma, Jose, and Maria) impacted the Northeastern Caribbean within a 2-week span. Hurricane waves can cause physical damage to coastal ecosystems, re-suspend and transport antecedent seafloor sediment, while the associated intense rainfall can yield large influxes of land-derived sediment to the coast (e.g. burial of ecosystems). To understand sedimentation provenance (terrestrial or marine) and changes induced by the hurricanes, we collected bathymetry surveys and sediment samples of Coral Bay, St. John, US Virgin Islands in August 2017, (pre-storms) and repeated it in November 2017 (post-storms). Comparison reveals morphologic seafloor changes and widespread aggradation with an average of ~25 cm of sediment deposited over a 1.28 km2 benthic zone. Despite an annual amount of precipitation between surveys, sediment yield modeling suggests watersheds contributed <0.2% of the total depositional volume. Considering locally established accumulation rates, this multi-hurricane event equates to ~1–3 centuries of deposition. Critical benthic communities (corals, seagrasses) can be partially or fully buried by deposits of this thickness and previous studies demonstrate that prolonged burial of similar organisms often leads to mortality. This study illuminates how storm events can result in major sediment deposition, which can significantly impact seafloor morphology and composition and benthic ecosystems.more » « less
-
Abstract Ecosystems vary broadly in their responses to disturbance, ranging from highly impacted to resilient or resistant. We conducted a large‐scale analysis of hurricane disturbance effects on coastal marshes by examining 20 years of data from 10 sites covering 100,000 ha at the Georgia Coastal Ecosystems Long‐Term Ecological Research site distributed across gradients of salinity and proximity to the ocean. We analyzed the impacts of Hurricanes Matthew (in 2016) and Irma (in 2017) on marsh biota (plants, crabs, and snails) and physical attributes (erosion, wrack deposition, and sedimentation). We compared these variables prior to the storms (2000–2015) to years with storms (2016, 2017) to those after the storms (2018–2020). Hurricanes generated storm surges that increased water depth and salinity of oligotrophic areas for up to 48 h. Biological variables in the marsh showed few effects of the hurricanes. The only physical variable affected was creek bank slumping; however, slumping had already increased a year before the hurricanes, suggesting that slumping could have a different cause. Thus, our study uncovered only minor, ephemeral impacts on Georgia coastal marshes, highlighting their resistance to hurricane disturbance of the lower magnitude that typically confronts this region of coastline.more » « less
-
Fujimura, Atsushi (Ed.)Identifying processes that promote coral reef recovery and resilience is crucial as ocean warming becomes more frequent and severe. Sexual reproduction is essential for the replenishment of coral populations and maintenance of genetic diversity; however, the ability for corals to reproduce may be impaired by marine heatwaves that cause coral bleaching. In 2014 and 2015, the Hawaiian Islands experienced coral bleaching with differential bleaching susceptibility in the speciesMontipora capitata, a dominant reef-building coral in the region. We tested the hypothesis that coral bleaching resistance enhances reproductive capacity and offspring performance by examining the reproductive biology of colonies that bleached and recovered (B) and colonies that did not bleach (NB) in 2015 in the subsequent spawning seasons. The proportion of colonies that spawned was higher in 2016 than in 2017. Regardless of parental bleaching history, we found eggs with higher abnormality and bundles with fewer eggs in 2016 than 2017. While reproductive output was similar between B and NB colonies in 2016, survivorship of offspring that year were significantly influenced by the parental bleaching history (egg donor × sperm donor: B × B, B × NB, NB × B, and NB × NB). Offspring produced by NB egg donors had the highest survivorship, while offspring from previously bleached colonies had the lowest survivorship, highlighting the negative effects of bleaching on parental investment and offspring performance. While sexual reproduction continues inM.capitatapost-bleaching, gametes are differentially impacted by recovery time following a bleaching event and by parental bleaching resistance. Our results demonstrate the importance of identifying bleaching resistant individuals during and after heating events. This study further highlights the significance of maternal effects through potential egg provisioning for offspring survivorship and provides a baseline for human-assisted intervention (i.e., selective breeding) to mitigate the effects of climate change on coral reefs.more » « less
An official website of the United States government

